Namespaces
Variants
Actions

Difference between revisions of "Carleman kernel"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A measurable, in general complex-valued, function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020420/c0204201.png" /> satisfying the conditions: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020420/c0204202.png" /> almost-everywhere on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020420/c0204203.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020420/c0204204.png" /> is a Lebesgue-measurable set of points in a finite-dimensional Euclidean space; and 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020420/c0204205.png" /> for almost-all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020420/c0204206.png" />.
+
<!--
 +
c0204201.png
 +
$#A+1 = 6 n = 0
 +
$#C+1 = 6 : ~/encyclopedia/old_files/data/C020/C.0200420 Carleman kernel
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A measurable, in general complex-valued, function  $  K (x, s) $
 +
satisfying the conditions: 1) $  {K (x, s) } bar = K (s, x) $
 +
almost-everywhere on $  E \times E $,  
 +
where $  E $
 +
is a Lebesgue-measurable set of points in a finite-dimensional Euclidean space; and 2) $  \int _ {E} | K (x, s) |  ^ {2}  ds < \infty $
 +
for almost-all $  x \in E $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.M. [I.M. Glaz'man] Glazman,  "Theory of linear operators in Hilbert space" , '''1–2''' , Pitman  (1980)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.M. [I.M. Glaz'man] Glazman,  "Theory of linear operators in Hilbert space" , '''1–2''' , Pitman  (1980)  (Translated from Russian)</TD></TR></table>

Revision as of 11:17, 30 May 2020


A measurable, in general complex-valued, function $ K (x, s) $ satisfying the conditions: 1) $ {K (x, s) } bar = K (s, x) $ almost-everywhere on $ E \times E $, where $ E $ is a Lebesgue-measurable set of points in a finite-dimensional Euclidean space; and 2) $ \int _ {E} | K (x, s) | ^ {2} ds < \infty $ for almost-all $ x \in E $.

References

[1] I.M. [I.M. Glaz'man] Glazman, "Theory of linear operators in Hilbert space" , 1–2 , Pitman (1980) (Translated from Russian)
How to Cite This Entry:
Carleman kernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Carleman_kernel&oldid=14808
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article