Namespaces
Variants
Actions

Difference between revisions of "Carleman boundary value problem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A boundary value problem for analytic functions involving a shift which reverses the direction of traversing the boundary. It was first considered by T. Carleman [[#References|[1]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c0204001.png" /> be a simple closed Lyapunov curve (cf. [[Lyapunov surfaces and curves|Lyapunov surfaces and curves]]) in the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c0204002.png" />-plane and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c0204003.png" /> be the finite domain bounded by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c0204004.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c0204005.png" /> be a given complex-valued function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c0204006.png" /> inducing a one-to-one mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c0204007.png" /> onto itself reversing the direction of traversing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c0204008.png" /> and satisfying additionally the Carleman condition:
+
<!--
 +
c0204001.png
 +
$#A+1 = 20 n = 0
 +
$#C+1 = 20 : ~/encyclopedia/old_files/data/C020/C.0200400 Carleman boundary value problem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c0204009.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
(it is further supposed that the derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c02040010.png" /> satisfies a Hölder condition). Then the Carleman boundary value problem consists in finding a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c02040011.png" />, analytic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c02040012.png" /> except for a finite number of poles, continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c02040013.png" /> and subject to the boundary condition
+
A boundary value problem for analytic functions involving a shift which reverses the direction of traversing the boundary. It was first considered by T. Carleman [[#References|[1]]]. Let  $  L $
 +
be a simple closed Lyapunov curve (cf. [[Lyapunov surfaces and curves|Lyapunov surfaces and curves]]) in the complex  $  z $-
 +
plane and let  $  D $
 +
be the finite domain bounded by  $  L $.  
 +
Let  $  \alpha (t) $
 +
be a given complex-valued function on  $  L $
 +
inducing a one-to-one mapping of  $  L $
 +
onto itself reversing the direction of traversing  $  L $
 +
and satisfying additionally the Carleman condition:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c02040014.png" /></td> </tr></table>
+
$$ \tag{* }
 +
\alpha [ \alpha (t)]  = t,\ \
 +
t \in L
 +
$$
  
where the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c02040015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c02040016.png" /> given on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c02040017.png" /> satisfy a Hölder condition and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c02040018.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c02040019.png" />.
+
(it is further supposed that the derivative  $  \alpha  ^  \prime  (t) $
 +
satisfies a Hölder condition). Then the Carleman boundary value problem consists in finding a function  $  \Phi (z) $,
 +
analytic in  $  D $
 +
except for a finite number of poles, continuous on  $  D \cup L $
 +
and subject to the boundary condition
 +
 
 +
$$
 +
\Phi [ \alpha (t)]  = \
 +
G (t) \Phi (t) + g (t),\ \
 +
t \in L,
 +
$$
 +
 
 +
where the functions $  G (t) $
 +
and $  g (t) $
 +
given on $  L $
 +
satisfy a Hölder condition and $  G (t) \neq 0 $
 +
on $  L $.
  
 
The Carleman boundary value problem has also been studied under the condition
 
The Carleman boundary value problem has also been studied under the condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020400/c02040020.png" /></td> </tr></table>
+
$$
 +
\alpha  ^ {m} (t)  = t,\
 +
\alpha  ^ {1} (t)  = \alpha (t),\ \
 +
\alpha  ^ {k} (t)  = \
 +
\alpha ( \alpha ^ {k - 1 } (t)),\ \
 +
k = 2 \dots m,
 +
$$
  
 
which is more general than (*), and so has the Carleman boundary value problem for several unknown functions (see [[#References|[2]]], [[#References|[3]]]).
 
which is more general than (*), and so has the Carleman boundary value problem for several unknown functions (see [[#References|[2]]], [[#References|[3]]]).

Latest revision as of 11:17, 30 May 2020


A boundary value problem for analytic functions involving a shift which reverses the direction of traversing the boundary. It was first considered by T. Carleman [1]. Let $ L $ be a simple closed Lyapunov curve (cf. Lyapunov surfaces and curves) in the complex $ z $- plane and let $ D $ be the finite domain bounded by $ L $. Let $ \alpha (t) $ be a given complex-valued function on $ L $ inducing a one-to-one mapping of $ L $ onto itself reversing the direction of traversing $ L $ and satisfying additionally the Carleman condition:

$$ \tag{* } \alpha [ \alpha (t)] = t,\ \ t \in L $$

(it is further supposed that the derivative $ \alpha ^ \prime (t) $ satisfies a Hölder condition). Then the Carleman boundary value problem consists in finding a function $ \Phi (z) $, analytic in $ D $ except for a finite number of poles, continuous on $ D \cup L $ and subject to the boundary condition

$$ \Phi [ \alpha (t)] = \ G (t) \Phi (t) + g (t),\ \ t \in L, $$

where the functions $ G (t) $ and $ g (t) $ given on $ L $ satisfy a Hölder condition and $ G (t) \neq 0 $ on $ L $.

The Carleman boundary value problem has also been studied under the condition

$$ \alpha ^ {m} (t) = t,\ \alpha ^ {1} (t) = \alpha (t),\ \ \alpha ^ {k} (t) = \ \alpha ( \alpha ^ {k - 1 } (t)),\ \ k = 2 \dots m, $$

which is more general than (*), and so has the Carleman boundary value problem for several unknown functions (see [2], [3]).

References

[1] T. Carleman, "Sur la théorie des équations intégrales et ses applications" , Verh. Internat. Mathematiker Kongress. Zürich, 1932 , 1 , O. Füssli (1932) pp. 138–151
[2] N.I. Muskhelishvili, "Singular integral equations" , Wolters-Noordhoff (1977) (Translated from Russian)
[3] N.P. Vekua, "Systems of singular integral equations and some boundary value problems" , Moscow (1970) (In Russian)
How to Cite This Entry:
Carleman boundary value problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Carleman_boundary_value_problem&oldid=13023
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article