Difference between revisions of "Carathéodory class"
Ulf Rehmann (talk | contribs) m (moved Carathéodory class to Caratheodory class: ascii title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0203001.png | ||
+ | $#A+1 = 54 n = 0 | ||
+ | $#C+1 = 54 : ~/encyclopedia/old_files/data/C020/C.0200300 Carath\Aeeodory class | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The class $ C $ | |
+ | of functions | ||
− | + | $$ | |
+ | f (z) = 1 + | ||
+ | \sum _ {n = 1 } ^ \infty | ||
+ | c _ {n} z ^ {n} | ||
+ | $$ | ||
− | < | + | that are regular in the disc $ | z | < 1 $ |
+ | and have positive real part there. The class is named after C. Carathéodory, who determined the precise set of values of the system of coefficients $ \{ c _ {1} \dots c _ {n} \} $, | ||
+ | $ n \geq 1 $, | ||
+ | on the class $ C $( | ||
+ | see [[#References|[1]]], [[#References|[2]]]). | ||
− | where | + | The Riesz–Herglotz theorem. In order that $ f (z) $ |
+ | be of class $ C $ | ||
+ | it is necessary and sufficient that it have a Stieltjes integral representation | ||
+ | |||
+ | $$ | ||
+ | f (z) = \ | ||
+ | \int\limits _ {- \pi } ^ \pi | ||
+ | |||
+ | \frac{e ^ {it} + z }{e ^ {it} - z } | ||
+ | \ | ||
+ | d \mu (t), | ||
+ | $$ | ||
+ | |||
+ | where $ \mu (t) $ | ||
+ | is a non-decreasing function on $ [- \pi , \pi ] $ | ||
+ | such that $ \mu ( \pi ) - \mu (- \pi ) = 1 $. | ||
By means of this representation it is easy to deduce integral parametric representations for classes of functions which are convex and univalent in the disc, star-shaped and univalent in the disc, and others. | By means of this representation it is easy to deduce integral parametric representations for classes of functions which are convex and univalent in the disc, star-shaped and univalent in the disc, and others. | ||
− | The Carathéodory–Toeplitz theorem. The set of values of the system | + | The Carathéodory–Toeplitz theorem. The set of values of the system $ \{ c _ {1} \dots c _ {n} \} $, |
+ | $ n \geq 1 $, | ||
+ | on $ C $ | ||
+ | is the closed convex bounded set $ K _ {n} $ | ||
+ | of points of the $ n $- | ||
+ | dimensional complex Euclidean space at which the determinants | ||
− | + | $$ | |
+ | \Delta _ {k} = \ | ||
+ | \left | | ||
− | + | \begin{array}{llll} | |
+ | 2 &c _ {1} &\dots &c _ {k} \\ | ||
+ | {\overline{c}\; _ {1} } & 2 &\dots &c _ {k - 1 } \\ | ||
+ | \cdot &\cdot &\dots &\cdot \\ | ||
+ | {\overline{c}\; _ {k} } &{\overline{c}\; _ {k - 1 } } &\dots & 2 \\ | ||
+ | \end{array} | ||
+ | \ | ||
+ | \right | ,\ \ | ||
+ | 1 \leq k \leq n, | ||
+ | $$ | ||
− | + | are either all positive, or positive up to some number, beyond which they are all zero. In the latter case one obtains a face $ \Pi _ {n} $ | |
+ | of the coefficient body $ K _ {n} $. | ||
+ | Corresponding to each point of $ \Pi _ {n} $ | ||
+ | there is just one function in the class $ C $, | ||
+ | which has the form | ||
+ | |||
+ | $$ | ||
+ | f _ {N} (z) = \ | ||
+ | \sum _ {j = 1 } ^ { N } | ||
+ | \lambda _ {j} | ||
+ | \frac{e ^ {it _ {j} } + z }{e ^ {it _ {j} } - z } | ||
+ | , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | \sum _ {j = 1 } ^ {N} | ||
+ | \lambda _ {j} = 1,\ \ | ||
+ | \lambda _ {j} > 0,\ \ | ||
+ | 1 \leq N \leq n,\ \ | ||
+ | - \pi < t _ {j} \leq \pi ,\ \ | ||
+ | t _ {j} \neq t _ {k} $$ | ||
+ | |||
+ | for $ j \neq k $, | ||
+ | $ k, j = 1 \dots N $. | ||
+ | |||
+ | The set of values of the coefficients $ c _ {n} $, | ||
+ | $ n = 1, 2 \dots $ | ||
+ | on $ C $ | ||
+ | is the disc $ | c _ {n} | \leq 2 $; | ||
+ | the only functions corresponding to the circle $ | c _ {n} | = 2 $ | ||
+ | are | ||
+ | |||
+ | $$ | ||
+ | f (z) = \ | ||
− | + | \frac{e ^ {it} + z }{e ^ {it} - z } | |
+ | . | ||
+ | $$ | ||
− | The set of values of | + | The set of values of $ f (z _ {0} ) $( |
+ | $ z _ {0} $ | ||
+ | fixed, $ | z _ {0} | < 1 $) | ||
+ | on $ C $ | ||
+ | is the disc whose diameter is the interval $ [ (1 - | z _ {0} | ) / (1 + | z _ {0} | ), (1 + | z _ {0} | ) / (1 - | z _ {0} | ) ] $; | ||
+ | the only functions corresponding to the boundary of this disc are | ||
− | + | $$ | |
+ | f (z) = \ | ||
− | + | \frac{e ^ {it} + z }{e ^ {it} - z } | |
+ | . | ||
+ | $$ | ||
− | + | Sets of values of systems of functionals of a more general type have also been considered (see [[#References|[6]]]). For the class $ C $, | |
+ | variational formulas have been obtained by means of which a number of extremal problems in the class $ C $ | ||
+ | are solved by the functions $ f _ {N} (z) $, | ||
+ | $ N \geq 2 $( | ||
+ | see [[#References|[6]]]). | ||
− | + | The main subclass of $ C $ | |
+ | is the class $ C _ {r} $ | ||
+ | of functions $ f (z) \in C $ | ||
+ | having real coefficients $ c _ {n} $, | ||
+ | $ n = 1, 2 , . . . $. | ||
+ | In order that $ f (z) $ | ||
+ | belong to the class $ C _ {r} $ | ||
+ | it is necessary and sufficient that it have a representation | ||
− | + | $$ | |
+ | f (z) = \ | ||
+ | \int\limits _ { 0 } ^ \pi | ||
− | + | \frac{1 - z ^ {2} }{1 - 2z \cos t + z ^ {2} } | |
+ | \ | ||
+ | d \mu (t), | ||
+ | $$ | ||
− | where | + | where $ \mu (t) $ |
+ | is a non-decreasing function on $ [0, \pi ] $ | ||
+ | such that $ \mu ( \pi ) - \mu (0) = 1 $. | ||
+ | By means of this representation many extremal problems in the class $ C _ {r} $ | ||
+ | are solved. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Carathéordory, "Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen" ''Math. Ann.'' , '''64''' (1907) pp. 95–115</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C. Carathéodory, "Über den Variabilitätsbereich der Fourier'schen Konstanten von positiven harmonischen Funktionen" ''Rend. Circ. Mat. Palermo'' , '''32''' (1911) pp. 193–217</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> O. Toeplitz, "Ueber die Fourier'sche Entwicklung positiver Funktionen" ''Rend. Circ. Mat. Palermo'' , '''32''' (1911) pp. 191–192</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> F. Riesz, "Sur certains systèmes singuliers d'equations intégrales" ''Ann. Sci. Ecole Norm. Super.'' , '''28''' (1911) pp. 33–62</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> G. Herglotz, "Über Potenzreihen mit positiven, reellen Teil im Einheitskreis" ''Ber. Verhandl. Sächs. Akad. Wiss. Leipzig. Math.-Nat. Kl.'' , '''63''' (1911) pp. 501–511</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Carathéordory, "Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen" ''Math. Ann.'' , '''64''' (1907) pp. 95–115</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C. Carathéodory, "Über den Variabilitätsbereich der Fourier'schen Konstanten von positiven harmonischen Funktionen" ''Rend. Circ. Mat. Palermo'' , '''32''' (1911) pp. 193–217</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> O. Toeplitz, "Ueber die Fourier'sche Entwicklung positiver Funktionen" ''Rend. Circ. Mat. Palermo'' , '''32''' (1911) pp. 191–192</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> F. Riesz, "Sur certains systèmes singuliers d'equations intégrales" ''Ann. Sci. Ecole Norm. Super.'' , '''28''' (1911) pp. 33–62</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> G. Herglotz, "Über Potenzreihen mit positiven, reellen Teil im Einheitskreis" ''Ber. Verhandl. Sächs. Akad. Wiss. Leipzig. Math.-Nat. Kl.'' , '''63''' (1911) pp. 501–511</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR></table> |
Latest revision as of 11:06, 30 May 2020
The class $ C $
of functions
$$ f (z) = 1 + \sum _ {n = 1 } ^ \infty c _ {n} z ^ {n} $$
that are regular in the disc $ | z | < 1 $ and have positive real part there. The class is named after C. Carathéodory, who determined the precise set of values of the system of coefficients $ \{ c _ {1} \dots c _ {n} \} $, $ n \geq 1 $, on the class $ C $( see [1], [2]).
The Riesz–Herglotz theorem. In order that $ f (z) $ be of class $ C $ it is necessary and sufficient that it have a Stieltjes integral representation
$$ f (z) = \ \int\limits _ {- \pi } ^ \pi \frac{e ^ {it} + z }{e ^ {it} - z } \ d \mu (t), $$
where $ \mu (t) $ is a non-decreasing function on $ [- \pi , \pi ] $ such that $ \mu ( \pi ) - \mu (- \pi ) = 1 $.
By means of this representation it is easy to deduce integral parametric representations for classes of functions which are convex and univalent in the disc, star-shaped and univalent in the disc, and others.
The Carathéodory–Toeplitz theorem. The set of values of the system $ \{ c _ {1} \dots c _ {n} \} $, $ n \geq 1 $, on $ C $ is the closed convex bounded set $ K _ {n} $ of points of the $ n $- dimensional complex Euclidean space at which the determinants
$$ \Delta _ {k} = \ \left | \begin{array}{llll} 2 &c _ {1} &\dots &c _ {k} \\ {\overline{c}\; _ {1} } & 2 &\dots &c _ {k - 1 } \\ \cdot &\cdot &\dots &\cdot \\ {\overline{c}\; _ {k} } &{\overline{c}\; _ {k - 1 } } &\dots & 2 \\ \end{array} \ \right | ,\ \ 1 \leq k \leq n, $$
are either all positive, or positive up to some number, beyond which they are all zero. In the latter case one obtains a face $ \Pi _ {n} $ of the coefficient body $ K _ {n} $. Corresponding to each point of $ \Pi _ {n} $ there is just one function in the class $ C $, which has the form
$$ f _ {N} (z) = \ \sum _ {j = 1 } ^ { N } \lambda _ {j} \frac{e ^ {it _ {j} } + z }{e ^ {it _ {j} } - z } , $$
where
$$ \sum _ {j = 1 } ^ {N} \lambda _ {j} = 1,\ \ \lambda _ {j} > 0,\ \ 1 \leq N \leq n,\ \ - \pi < t _ {j} \leq \pi ,\ \ t _ {j} \neq t _ {k} $$
for $ j \neq k $, $ k, j = 1 \dots N $.
The set of values of the coefficients $ c _ {n} $, $ n = 1, 2 \dots $ on $ C $ is the disc $ | c _ {n} | \leq 2 $; the only functions corresponding to the circle $ | c _ {n} | = 2 $ are
$$ f (z) = \ \frac{e ^ {it} + z }{e ^ {it} - z } . $$
The set of values of $ f (z _ {0} ) $( $ z _ {0} $ fixed, $ | z _ {0} | < 1 $) on $ C $ is the disc whose diameter is the interval $ [ (1 - | z _ {0} | ) / (1 + | z _ {0} | ), (1 + | z _ {0} | ) / (1 - | z _ {0} | ) ] $; the only functions corresponding to the boundary of this disc are
$$ f (z) = \ \frac{e ^ {it} + z }{e ^ {it} - z } . $$
Sets of values of systems of functionals of a more general type have also been considered (see [6]). For the class $ C $, variational formulas have been obtained by means of which a number of extremal problems in the class $ C $ are solved by the functions $ f _ {N} (z) $, $ N \geq 2 $( see [6]).
The main subclass of $ C $ is the class $ C _ {r} $ of functions $ f (z) \in C $ having real coefficients $ c _ {n} $, $ n = 1, 2 , . . . $. In order that $ f (z) $ belong to the class $ C _ {r} $ it is necessary and sufficient that it have a representation
$$ f (z) = \ \int\limits _ { 0 } ^ \pi \frac{1 - z ^ {2} }{1 - 2z \cos t + z ^ {2} } \ d \mu (t), $$
where $ \mu (t) $ is a non-decreasing function on $ [0, \pi ] $ such that $ \mu ( \pi ) - \mu (0) = 1 $. By means of this representation many extremal problems in the class $ C _ {r} $ are solved.
References
[1] | C. Carathéordory, "Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen" Math. Ann. , 64 (1907) pp. 95–115 |
[2] | C. Carathéodory, "Über den Variabilitätsbereich der Fourier'schen Konstanten von positiven harmonischen Funktionen" Rend. Circ. Mat. Palermo , 32 (1911) pp. 193–217 |
[3] | O. Toeplitz, "Ueber die Fourier'sche Entwicklung positiver Funktionen" Rend. Circ. Mat. Palermo , 32 (1911) pp. 191–192 |
[4] | F. Riesz, "Sur certains systèmes singuliers d'equations intégrales" Ann. Sci. Ecole Norm. Super. , 28 (1911) pp. 33–62 |
[5] | G. Herglotz, "Über Potenzreihen mit positiven, reellen Teil im Einheitskreis" Ber. Verhandl. Sächs. Akad. Wiss. Leipzig. Math.-Nat. Kl. , 63 (1911) pp. 501–511 |
[6] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
Carathéodory class. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Carath%C3%A9odory_class&oldid=22237