Namespaces
Variants
Actions

Difference between revisions of "Canonical sections"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
c0201801.png
 +
$#A+1 = 40 n = 0
 +
$#C+1 = 40 : ~/encyclopedia/old_files/data/C020/C.0200180 Canonical sections,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''canonical cuts''
 
''canonical cuts''
  
 
A system of canonical sections is a set
 
A system of canonical sections is a set
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c0201801.png" /></td> </tr></table>
+
$$
 +
= \{ a _ {1} , b _ {1} \dots a _ {g} ,\
 +
b _ {g} , l _ {1} \dots l _  \nu  \}
 +
$$
  
of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c0201802.png" /> curves on a finite [[Riemann surface|Riemann surface]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c0201803.png" /> of genus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c0201804.png" /> with a boundary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c0201805.png" /> components such that when these curves are removed from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c0201806.png" />, i.e. on cutting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c0201807.png" /> along the curves of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c0201808.png" />, there remains a (planar) simply-connected domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c0201809.png" />. More precisely, a system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018010.png" /> is a set of canonical sections if to each closed or cyclic section <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018012.png" />, in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018013.png" /> (or cycle for short) there is exactly one so-called adjoint cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018014.png" /> cutting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018015.png" /> at exactly one fixed point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018016.png" /> common to all the sections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018017.png" />. The remaining cycles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018019.png" />, and curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018021.png" />, have only the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018022.png" /> in common, and do not pass from one side of the section <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018023.png" /> to the other; each curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018024.png" /> joins <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018025.png" /> with the corresponding boundary component. On a given Riemann surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018026.png" /> there exists an infinite set of systems of canonical sections. In particular, for any simply-connected domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018027.png" /> that, together with its closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018028.png" />, lies strictly in the interior of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018029.png" />, a system of canonical sections can be chosen such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018030.png" />.
+
of $  2g + \nu $
 +
curves on a finite [[Riemann surface|Riemann surface]] $  R $
 +
of genus $  g $
 +
with a boundary of $  \nu $
 +
components such that when these curves are removed from $  R $,  
 +
i.e. on cutting $  R $
 +
along the curves of $  S $,  
 +
there remains a (planar) simply-connected domain $  R  ^ {*} $.  
 +
More precisely, a system $  S $
 +
is a set of canonical sections if to each closed or cyclic section $  a _ {j} $,  
 +
$  j = 1 \dots g $,  
 +
in $  S $(
 +
or cycle for short) there is exactly one so-called adjoint cycle $  b _ {j} $
 +
cutting $  a _ {j} $
 +
at exactly one fixed point $  p _ {0} \in R $
 +
common to all the sections of $  S $.  
 +
The remaining cycles $  a _ {k} , b _ {k} $,  
 +
$  k \neq j $,  
 +
and curves $  l _ {s} $,  
 +
$  s = 1 \dots \nu $,  
 +
have only the point $  p _ {0} $
 +
in common, and do not pass from one side of the section $  a _ {j} $
 +
to the other; each curve $  l _ {s} $
 +
joins $  p _ {0} $
 +
with the corresponding boundary component. On a given Riemann surface $  R $
 +
there exists an infinite set of systems of canonical sections. In particular, for any simply-connected domain $  D \subset  R $
 +
that, together with its closure $  \overline{D}\; $,  
 +
lies strictly in the interior of $  R $,  
 +
a system of canonical sections can be chosen such that $  D \subset  R  ^ {*} $.
  
Furthermore, it is always possible to find a system of canonical sections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018031.png" /> consisting entirely of analytic curves. The uniqueness of a system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018032.png" /> of analytic curves can be ensured, for example, by the additional requirement that some functional related to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018033.png" /> attains an extremum. In particular, one can draw cyclic canonical sections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018034.png" /> of a system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018035.png" /> such that the greatest value of the [[Robin constant|Robin constant]] in the class of systems homotopic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018036.png" /> is attained at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018037.png" /> in a specific domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018039.png" />. Uniqueness of the curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c02018040.png" /> can also be ensured by requiring that the Robin constants are maximized at a specified pair of points (see [[#References|[2]]]).
+
Furthermore, it is always possible to find a system of canonical sections $  S $
 +
consisting entirely of analytic curves. The uniqueness of a system $  S $
 +
of analytic curves can be ensured, for example, by the additional requirement that some functional related to $  S $
 +
attains an extremum. In particular, one can draw cyclic canonical sections $  a _ {j} , b _ {j} $
 +
of a system $  S $
 +
such that the greatest value of the [[Robin constant|Robin constant]] in the class of systems homotopic to $  S $
 +
is attained at a point $  p _ {0} $
 +
in a specific domain $  D \subset  R $,  
 +
$  p _ {0} \in D $.  
 +
Uniqueness of the curves $  l _ {s} $
 +
can also be ensured by requiring that the Robin constants are maximized at a specified pair of points (see [[#References|[2]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Hurwitz,  R. Courant,  "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , '''1''' , Springer  (1964)  pp. Chapt.8</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M. Schiffer,  D.C. Spencer,  "Functionals of finite Riemann surfaces" , Princeton Univ. Press  (1954)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Hurwitz,  R. Courant,  "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , '''1''' , Springer  (1964)  pp. Chapt.8</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M. Schiffer,  D.C. Spencer,  "Functionals of finite Riemann surfaces" , Princeton Univ. Press  (1954)</TD></TR></table>

Latest revision as of 06:29, 30 May 2020


canonical cuts

A system of canonical sections is a set

$$ S = \{ a _ {1} , b _ {1} \dots a _ {g} ,\ b _ {g} , l _ {1} \dots l _ \nu \} $$

of $ 2g + \nu $ curves on a finite Riemann surface $ R $ of genus $ g $ with a boundary of $ \nu $ components such that when these curves are removed from $ R $, i.e. on cutting $ R $ along the curves of $ S $, there remains a (planar) simply-connected domain $ R ^ {*} $. More precisely, a system $ S $ is a set of canonical sections if to each closed or cyclic section $ a _ {j} $, $ j = 1 \dots g $, in $ S $( or cycle for short) there is exactly one so-called adjoint cycle $ b _ {j} $ cutting $ a _ {j} $ at exactly one fixed point $ p _ {0} \in R $ common to all the sections of $ S $. The remaining cycles $ a _ {k} , b _ {k} $, $ k \neq j $, and curves $ l _ {s} $, $ s = 1 \dots \nu $, have only the point $ p _ {0} $ in common, and do not pass from one side of the section $ a _ {j} $ to the other; each curve $ l _ {s} $ joins $ p _ {0} $ with the corresponding boundary component. On a given Riemann surface $ R $ there exists an infinite set of systems of canonical sections. In particular, for any simply-connected domain $ D \subset R $ that, together with its closure $ \overline{D}\; $, lies strictly in the interior of $ R $, a system of canonical sections can be chosen such that $ D \subset R ^ {*} $.

Furthermore, it is always possible to find a system of canonical sections $ S $ consisting entirely of analytic curves. The uniqueness of a system $ S $ of analytic curves can be ensured, for example, by the additional requirement that some functional related to $ S $ attains an extremum. In particular, one can draw cyclic canonical sections $ a _ {j} , b _ {j} $ of a system $ S $ such that the greatest value of the Robin constant in the class of systems homotopic to $ S $ is attained at a point $ p _ {0} $ in a specific domain $ D \subset R $, $ p _ {0} \in D $. Uniqueness of the curves $ l _ {s} $ can also be ensured by requiring that the Robin constants are maximized at a specified pair of points (see [2]).

References

[1] A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , 1 , Springer (1964) pp. Chapt.8
[2] M. Schiffer, D.C. Spencer, "Functionals of finite Riemann surfaces" , Princeton Univ. Press (1954)
How to Cite This Entry:
Canonical sections. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Canonical_sections&oldid=17965
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article