Namespaces
Variants
Actions

Difference between pages "Branching process with a random medium" and "Branching process, age-dependent"

From Encyclopedia of Mathematics
(Difference between pages)
Jump to: navigation, search
(refs format)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''branching process in a random medium''
+
<!--
 +
b0175401.png
 +
$#A+1 = 27 n = 0
 +
$#C+1 = 27 : ~/encyclopedia/old_files/data/B017/B.0107540 Branching process, age\AAhdependent
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
  
 
{{MSC|60J80}}
 
{{MSC|60J80}}
Line 5: Line 15:
 
[[Category:Branching processes]]
 
[[Category:Branching processes]]
  
A time-inhomogeneous branching process in which the inhomogeneity is random. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b0175601.png" /> be a stationary sequence of random variables (the value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b0175602.png" /> is interpreted as the state of the "medium" at the moment of time <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b0175603.png" />), and let to each possible state of the medium <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b0175604.png" /> correspond a probability distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b0175605.png" /> of the number of descendants of a single particle:
+
A model of a branching process in which the lifetime of a particle is an arbitrary non-negative random variable, while the number of daughter particles depends on its age at the moment of transformation. In the single-type particle model each particle has a random duration of life  $  \tau $
 
+
with distribution function
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b0175606.png" /></td> </tr></table>
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b0175607.png" /></td> </tr></table>
 
 
 
In order to construct a trajectory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b0175608.png" /> of a branching process in a random medium the value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b0175609.png" /> and the trajectory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756010.png" /> of the states of the medium are fixed, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756011.png" /> is determined for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756012.png" /> as a sum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756013.png" /> independent random variables with distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756014.png" />. Such a complication of the branching [[Galton–Watson process|Galton–Watson process]] is natural if, for example, the branching process in a random medium is regarded as a model of a biological population.
 
 
 
The properties of branching processes in a random medium are analogous to those of ordinary branching processes. For instance, the generating distribution function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756015.png" />, under the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756016.png" />, has the form
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756017.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
 
  
(for a branching Galton–Watson process, i.e. for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756018.png" />, the right-hand side of (*) equals the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756019.png" />-fold iteration of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756020.png" />). Branching processes in a random medium may be subcritical, critical and supercritical: the "criticality parameter" here (see {{Cite|AN}}) is the variable
+
$$
 +
{\mathsf P} \{ \tau \leq  t \}  = G (t).
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756021.png" /></td> </tr></table>
+
At the end of its life the particle is transformed into  $  k $
 +
daughter particles of age zero with a probability  $  p _ {k} (u) $
 +
if the transformation took place when the age attained by the original particle was  $  u $.  
 +
Let  $  \mu (t) $
 +
be the number of particles at the moment of time  $  t $.  
 +
The generating function  $  F(t;  x) $
 +
of the probability distribution of  $  \mu (t) $
 +
for a process beginning with one particle of age zero satisfies the equation
  
(for ordinary branching processes, the "criticality parameter" is the mathematical expectation of the number of "descendants" of a single particle). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756022.png" />, the branching process in a random medium is said to be subcritical and, for the random variable
+
$$ \tag{* }
 +
F (t;  x) = \
 +
\int\limits _ { 0 } ^ { t }
 +
h (u, F  (t - u ;  x))
 +
dG (u) + x (1 - G (t)),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756023.png" /></td> </tr></table>
+
where
  
which is the probability of extinction of the branching process in a random medium for a given trajectory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756024.png" />, the relation
+
$$
 +
h (u, x)  = \
 +
\sum _ {k = 0 } ^  \infty 
 +
p _ {k} (u) x  ^ {k} .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756025.png" /></td> </tr></table>
+
Put
  
is valid. There is also the analogue of the limit theorem of the subcritical Galton–Watson branching process: For almost all realizations of the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756026.png" /> the limits
+
$$
 +
\left . a (u)  = \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756027.png" /></td> </tr></table>
+
\frac{\partial  h }{\partial  x }
 +
\
 +
\right | _ {x = 1 }  ,\ \
 +
\left . b (u)  = \
  
exist and satisfy
+
\frac{\partial  ^ {2} h }{\partial  x  ^ {2} }
 +
\
 +
\right | _ {x = 1 }  ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756028.png" /></td> </tr></table>
+
$$
 +
= \int\limits _ { 0 } ^  \infty  a (u)  dG (u),\  B  = \int\limits _ { 0 } ^  \infty  b (u)  dG (u).
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756029.png" />, the branching process in a random medium is said to be critical, and
+
An age-dependent branching process is said to be subcritical, critical or supercritical if  $  A > 1 $,  
 +
$  A = 1 $
 +
and $  B > 0 $,
 +
or  $  A > 1 $,
 +
respectively. The behaviour of the process as  $  t \rightarrow \infty $
 +
substantially depends on its criticality. Subcritical and critical processes die out with probability one, i.e.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756030.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {t \rightarrow \infty } \
 +
{\mathsf P} \{ \mu (t) = 0 \}  = 1.
 +
$$
  
and, for almost all realizations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756031.png" />,
+
The following results have been obtained for these processes {{Cite|S}}: asymptotic formulas for the moments  $  \mu (t) $,
 +
necessary and sufficient conditions of extinction, conditions of existence and uniqueness of a solution of equation (*) and asymptotic formulas as  $  t \rightarrow \infty $
 +
for
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756032.png" /></td> </tr></table>
+
$$
 +
Q (t)  = \
 +
{\mathsf P} \{ \mu (t) > 0 \} .
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756033.png" />, the branching process in a random medium is said to be supercritical; in such a case
+
The limit distributions have also been determined. In the critical case, as  $  t \rightarrow \infty $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756034.png" /></td> </tr></table>
+
$$
 +
Q(t)  \approx \
 +
2
 +
\frac{\int\limits _ { 0 } ^  \infty  u a (u)  dG (u) }{Bt }
 +
,
 +
$$
  
and, if certain additional conditions are met, there exists for almost all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756035.png" /> a non-negative random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756036.png" />,
+
$$
 +
{\mathsf P} \left \{
 +
\frac{\mu (t) }{ {\mathsf E} ( \mu (t) \mid  \mu (t)
 +
> 0) }
 +
< x \mid  \mu (t) > 0 \right \}  \rightarrow  1 - e  ^ {-x} ,\  x > 0.
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756037.png" /></td> </tr></table>
+
If  $  h(u, x) $
 +
is independent of  $  u $,
 +
the age-dependent branching process is a [[Bellman–Harris process|Bellman–Harris process]]. The model just described has been generalized to include processes with several types of particles, and also to processes for which a particle may generate new particles several times during its lifetime {{Cite|S2}}, {{Cite|M}}.
  
 
====References====
 
====References====
 
{|
 
{|
|valign="top"|{{Ref|AN}}|| K.B. Athreya, P.E. Ney, "Branching processes" , Springer (1972) {{MR|0373040}} {{ZBL|0259.60002}}
+
|valign="top"|{{Ref|S}}|| B.A. Sewastjanow, "Verzweigungsprozesse" , Akad. Wissenschaft. DDR (1974) (Translated from Russian) {{MR|0408018}} {{ZBL|0291.60039}}
 +
|-
 +
|valign="top"|{{Ref|S2}}|| B.A. Sewastjanow, "Age-dependent branching processes" ''Theory Probab. Appl.'' , '''9''' : 4 (1964) pp. 521–537 ''Teor. Veroyatnost. i Primenen.'' , '''9''' : 4 (1964) pp. 577–594 {{MR|0170396}} {{ZBL|0248.60059}}
 +
|-
 +
|valign="top"|{{Ref|M}}|| C.J. Mode, "Multitype branching processes" , Elsevier (1971) {{MR|0279901}} {{ZBL|0219.60061}}
 
|}
 
|}
  
 
====Comments====
 
====Comments====
 
Additional references can be found in the article [[Branching process|Branching process]].
 
Additional references can be found in the article [[Branching process|Branching process]].

Latest revision as of 06:29, 30 May 2020


2020 Mathematics Subject Classification: Primary: 60J80 [MSN][ZBL]

A model of a branching process in which the lifetime of a particle is an arbitrary non-negative random variable, while the number of daughter particles depends on its age at the moment of transformation. In the single-type particle model each particle has a random duration of life $ \tau $ with distribution function

$$ {\mathsf P} \{ \tau \leq t \} = G (t). $$

At the end of its life the particle is transformed into $ k $ daughter particles of age zero with a probability $ p _ {k} (u) $ if the transformation took place when the age attained by the original particle was $ u $. Let $ \mu (t) $ be the number of particles at the moment of time $ t $. The generating function $ F(t; x) $ of the probability distribution of $ \mu (t) $ for a process beginning with one particle of age zero satisfies the equation

$$ \tag{* } F (t; x) = \ \int\limits _ { 0 } ^ { t } h (u, F (t - u ; x)) dG (u) + x (1 - G (t)), $$

where

$$ h (u, x) = \ \sum _ {k = 0 } ^ \infty p _ {k} (u) x ^ {k} . $$

Put

$$ \left . a (u) = \ \frac{\partial h }{\partial x } \ \right | _ {x = 1 } ,\ \ \left . b (u) = \ \frac{\partial ^ {2} h }{\partial x ^ {2} } \ \right | _ {x = 1 } , $$

$$ A = \int\limits _ { 0 } ^ \infty a (u) dG (u),\ B = \int\limits _ { 0 } ^ \infty b (u) dG (u). $$

An age-dependent branching process is said to be subcritical, critical or supercritical if $ A > 1 $, $ A = 1 $ and $ B > 0 $, or $ A > 1 $, respectively. The behaviour of the process as $ t \rightarrow \infty $ substantially depends on its criticality. Subcritical and critical processes die out with probability one, i.e.

$$ \lim\limits _ {t \rightarrow \infty } \ {\mathsf P} \{ \mu (t) = 0 \} = 1. $$

The following results have been obtained for these processes [S]: asymptotic formulas for the moments $ \mu (t) $, necessary and sufficient conditions of extinction, conditions of existence and uniqueness of a solution of equation (*) and asymptotic formulas as $ t \rightarrow \infty $ for

$$ Q (t) = \ {\mathsf P} \{ \mu (t) > 0 \} . $$

The limit distributions have also been determined. In the critical case, as $ t \rightarrow \infty $:

$$ Q(t) \approx \ 2 \frac{\int\limits _ { 0 } ^ \infty u a (u) dG (u) }{Bt } , $$

$$ {\mathsf P} \left \{ \frac{\mu (t) }{ {\mathsf E} ( \mu (t) \mid \mu (t) > 0) } < x \mid \mu (t) > 0 \right \} \rightarrow 1 - e ^ {-x} ,\ x > 0. $$

If $ h(u, x) $ is independent of $ u $, the age-dependent branching process is a Bellman–Harris process. The model just described has been generalized to include processes with several types of particles, and also to processes for which a particle may generate new particles several times during its lifetime [S2], [M].

References

[S] B.A. Sewastjanow, "Verzweigungsprozesse" , Akad. Wissenschaft. DDR (1974) (Translated from Russian) MR0408018 Zbl 0291.60039
[S2] B.A. Sewastjanow, "Age-dependent branching processes" Theory Probab. Appl. , 9 : 4 (1964) pp. 521–537 Teor. Veroyatnost. i Primenen. , 9 : 4 (1964) pp. 577–594 MR0170396 Zbl 0248.60059
[M] C.J. Mode, "Multitype branching processes" , Elsevier (1971) MR0279901 Zbl 0219.60061

Comments

Additional references can be found in the article Branching process.

How to Cite This Entry:
Branching process with a random medium. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Branching_process_with_a_random_medium&oldid=26371
This article was adapted from an original article by A.M. Zubkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article