Namespaces
Variants
Actions

Difference between revisions of "Boundary value problem, ordinary differential equations"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
b0173701.png
 +
$#A+1 = 60 n = 0
 +
$#C+1 = 60 : ~/encyclopedia/old_files/data/B017/B.0107370 Boundary value problem, ordinary differential equations
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
The problem of finding a solution to an equation
 
The problem of finding a solution to an equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b0173701.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
 
 +
\frac{dx }{dt }
 +
  = \
 +
f (t, x),\ \
 +
t \in J,\ \
 +
x \in \mathbf R  ^ {n} ,
 +
$$
  
lying in a given subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b0173702.png" /> of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b0173703.png" /> of functions depending on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b0173704.png" /> that are absolutely continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b0173705.png" /> and that assume values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b0173706.png" />:
+
lying in a given subset $  D $
 +
of the space $  D (J, \mathbf R  ^ {n} ) $
 +
of functions depending on $  t $
 +
that are absolutely continuous on $  J $
 +
and that assume values in $  \mathbf R  ^ {n} $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b0173707.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
x ( \cdot ) \in  D.
 +
$$
  
It is assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b0173708.png" /> is a function defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b0173709.png" /> with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737010.png" /> and satisfying the Carathéodory conditions; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737011.png" /> is an interval on the real line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737012.png" />.
+
It is assumed that $  f (t, x) $
 +
is a function defined on $  J \times \mathbf R  ^ {n} $
 +
with values in $  \mathbf R  ^ {n} $
 +
and satisfying the Carathéodory conditions; $  J $
 +
is an interval on the real line $  \mathbf R $.
  
 
1) The boundary value problem (1), (2) is said to be linear if
 
1) The boundary value problem (1), (2) is said to be linear if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737013.png" /></td> </tr></table>
+
$$
 +
f (t, x)  \equiv \
 +
A (t) x + b (t),
 +
$$
  
where the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737015.png" /> are summable on every compact interval in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737016.png" /> and the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737017.png" /> is a linear manifold in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737018.png" />. In particular, one might have
+
where the functions $  A (t) $
 +
and b (t) $
 +
are summable on every compact interval in $  J $
 +
and the set $  D $
 +
is a linear manifold in $  D (J, \mathbf R  ^ {n} ) $.  
 +
In particular, one might have
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737019.png" /></td> </tr></table>
+
$$
 +
= \
 +
[t _ {0} , t _ {1} ],
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737020.png" /></td> </tr></table>
+
$$
 +
= \left \{ x ( \cdot )  \in  D (J, \mathbf R
 +
^ {n} ): \int\limits _ { t _ {0} } ^ { {t _ 1 } } [d \Phi (t)] x (t)  = 0 \right \} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737021.png" /> is a function of bounded variation. A linear boundary value problem gives rise to a linear operator
+
where $  \Phi (t) $
 +
is a function of bounded variation. A linear boundary value problem gives rise to a linear operator
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737022.png" /></td> </tr></table>
+
$$
 +
Lx (t)  \equiv \
 +
x  ^  \prime  - A (t) x,\ \
 +
x ( \cdot ) \in D,
 +
$$
  
the eigen values of which are precisely those values of the parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737023.png" /> for which the homogeneous boundary value problem
+
the eigen values of which are precisely those values of the parameter $  \lambda $
 +
for which the homogeneous boundary value problem
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737024.png" /></td> </tr></table>
+
$$
 +
x  ^  \prime  - A (t) x  = \lambda x,\ \
 +
x ( \cdot ) \in D,
 +
$$
  
has non-trivial solutions. These non-trivial solutions are the eigen functions of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737025.png" />. If the inverse operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737026.png" /> exists and has an integral representation
+
has non-trivial solutions. These non-trivial solutions are the eigen functions of the operator $  L $.  
 +
If the inverse operator $  L  ^ {-1} $
 +
exists and has an integral representation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737027.png" /></td> </tr></table>
+
$$
 +
x (t)  = \
 +
L  ^ {-1} b (t)  \equiv \
 +
\int\limits _ { J } G (t, s)
 +
b (s)  ds,\ \
 +
t \in J,
 +
$$
  
then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737028.png" /> is called a Green function.
+
then $  G (t, s) $
 +
is called a Green function.
  
2) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737029.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737030.png" /> be almost-periodic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737031.png" /> uniformly in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737032.png" /> on every compact subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737033.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737034.png" /> be the set of almost-periodic functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737035.png" /> that are absolutely continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737036.png" />. Then problem (1), (2) is known as the problem of almost-periodic solutions.
+
2) Let $  J = (- \infty , \infty ) $,  
 +
let $  f (t, x) $
 +
be almost-periodic in $  t $
 +
uniformly in $  x $
 +
on every compact subset of $  \mathbf R  ^ {n} $
 +
and let $  D $
 +
be the set of almost-periodic functions in $  t $
 +
that are absolutely continuous on $  J $.  
 +
Then problem (1), (2) is known as the problem of almost-periodic solutions.
  
 
3) In control theory one considers boundary value problems with a functional parameter: a control. For example, consider the equation
 
3) In control theory one considers boundary value problems with a functional parameter: a control. For example, consider the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737037.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
  
with set of admissible controls <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737038.png" /> and two sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737039.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737040.png" /> be the set of absolutely continuous functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737041.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737042.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737043.png" />. The boundary value problem is to find a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737044.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737045.png" /> and the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737046.png" /> of equation (3) at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737047.png" /> satisfies the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737048.png" />.
+
\frac{dx }{dt }
 +
  = \
 +
f (t, x, u),\ \
 +
t \in J =
 +
[t _ {0} , t _ {1} ],\ \
 +
x \in \mathbf R  ^ {n} ,
 +
$$
 +
 
 +
with set of admissible controls $  U $
 +
and two sets $  M _ {0} , M _ {1} \subset  \mathbf R  ^ {n} $.  
 +
Let $  D $
 +
be the set of absolutely continuous functions in $  t $
 +
such that $  x (t _ {0} ) \in M _ {0} $,  
 +
$  x (t _ {1} ) \in M _ {1} $.  
 +
The boundary value problem is to find a pair $  (x _ {0} ( \cdot ), u _ {0} ( \cdot )) $
 +
such that $  u _ {0} ( \cdot ) \in U $
 +
and the solution $  x _ {0} (t) $
 +
of equation (3) at $  u = u _ {0} (t) $
 +
satisfies the condition $  x _ {0} ( \cdot ) \in D $.
  
 
4) There is a wide range of diverse necessary and sufficient conditions for the existence and uniqueness of solutions to various boundary value problems, and of methods for constructing an approximate solution (see [[#References|[4]]]–[[#References|[7]]]). For example, consider the problem
 
4) There is a wide range of diverse necessary and sufficient conditions for the existence and uniqueness of solutions to various boundary value problems, and of methods for constructing an approximate solution (see [[#References|[4]]]–[[#References|[7]]]). For example, consider the problem
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737049.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{4 }
 +
\left .
 +
\begin{array}{c}
 +
 
 +
x  ^  \prime  = A (t) x + f (t, x),
 +
\\
 +
 
 +
\int\limits _ { t _ {0} } ^ { {t _ 1 } }
 +
[d \Phi (t)] x (t)  = 0,
 +
\end{array}
 +
\
 +
\right \}
 +
$$
  
 
in which
 
in which
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737050.png" /></td> </tr></table>
+
$$
 +
\| f (t, x) \|
 +
\leq  a + b \
 +
\| x \|  ^  \alpha
 +
$$
  
for certain constants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737051.png" />. Suppose that the homogeneous problem
+
for certain constants $  a > 0, b > 0, \alpha \geq  0 $.  
 +
Suppose that the homogeneous problem
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737052.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5)</td></tr></table>
+
$$ \tag{5 }
 +
x  ^  \prime  = A (t) x,\ \
 +
\int\limits _ { t _ {0} } ^ { {t _ 1 } }
 +
[d \Phi (t)] x (t) =  0
 +
$$
  
is regular, i.e. its only solution is the trivial one. Then problem (4) has at least one solution, provided either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737053.png" />, or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737054.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737055.png" /> is sufficiently small. It is fairly complicated to determine whether problem (5) is regular. However, the linear (scalar) boundary value problem
+
is regular, i.e. its only solution is the trivial one. Then problem (4) has at least one solution, provided either $  \alpha < 1 $,  
 +
or $  \alpha \geq  1 $
 +
and b $
 +
is sufficiently small. It is fairly complicated to determine whether problem (5) is regular. However, the linear (scalar) boundary value problem
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737056.png" /></td> </tr></table>
+
$$
 +
x  ^ {\prime\prime} + q (t)
 +
x  ^  \prime  + p (t) x  = 0,\ \
 +
x (t _ {0} )  = 0,\ \
 +
x (t _ {1} )  = 0,
 +
$$
  
for example, is regular if whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737057.png" /> there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737058.png" /> such that
+
for example, is regular if whenever $  | q (t) | \leq  2m $
 +
there exists a $  k \in \mathbf R $
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737059.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { t _ {0} } ^ { {t _ 1 } }
 +
[p (t) - k] _ {+}  dt  < \
 +
2 [F (k, m) - m],
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737060.png" /></td> </tr></table>
+
$$
 +
F (k, m)  = \
 +
\left \{
 +
 
 +
\begin{array}{l}
 +
\sqrt {k - m  ^ {2} }
 +
\mathop{\rm cotg} \
 +
{
 +
\frac{(t _ {1} - t _ {0} )
 +
\sqrt {k - m  ^ {2} } }{2}
 +
} ,  \\
 +
\  \  m  ^ {2} < k \leq  m  ^ {2} +
 +
 
 +
\frac{\pi  ^ {2} }{(t _ {1} - t _ {0} )  ^ {2} }
 +
,  \\
 +
 
 +
\frac{2}{t _ {1} - t _ {0} }
 +
,\ \
 +
k = m  ^ {2} ,  \\
 +
\sqrt {m  ^ {2} - k } \
 +
\mathop{\rm cotg} \
 +
{
 +
\frac{(t _ {1} - t _ {0} )
 +
\sqrt {m  ^ {2} - k } }{2}
 +
} ,\ \
 +
k < m  ^ {2} . \\
 +
\end{array}
 +
 
 +
\right .$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P. Hartman,  "Ordinary differential equations" , Birkhäuser  (1982)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M.A. Krasnosel'skii,  V.Sh. Burd,  Yu.S. Kolesov,  "Nonlinear almost-periodic oscillations" , Wiley  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L.S. Pontryagin,  V.G. Boltayanskii,  R.V. Gamkrelidze,  E.F. Mishchenko,  "The mathematical theory of optimal processes" , Interscience  (1962)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.N. Krasovskii,  "Theory of control of motion. Linear systems" , Moscow  (1968)  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  V.I. Zubov,  "Lectures in control theory" , Moscow  (1975)  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  E. Kamke,  "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''1. Gewöhnliche Differentialgleichungen''' , Chelsea, reprint  (1971)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  I.T. Kiguradze,  "Some singular boundary value problems for ordinary differential equations" , Tbilisi  (1975)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P. Hartman,  "Ordinary differential equations" , Birkhäuser  (1982)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M.A. Krasnosel'skii,  V.Sh. Burd,  Yu.S. Kolesov,  "Nonlinear almost-periodic oscillations" , Wiley  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L.S. Pontryagin,  V.G. Boltayanskii,  R.V. Gamkrelidze,  E.F. Mishchenko,  "The mathematical theory of optimal processes" , Interscience  (1962)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.N. Krasovskii,  "Theory of control of motion. Linear systems" , Moscow  (1968)  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  V.I. Zubov,  "Lectures in control theory" , Moscow  (1975)  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  E. Kamke,  "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''1. Gewöhnliche Differentialgleichungen''' , Chelsea, reprint  (1971)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  I.T. Kiguradze,  "Some singular boundary value problems for ordinary differential equations" , Tbilisi  (1975)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Braun,  "Differential equations and their applications" , Springer  (1975)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E.L. Ince,  "Ordinary differential equations" , Dover, reprint  (1956)  pp. §§3.6, 3.51, 4.7, A.5</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  L.K. Jackson,  "Boundary value problems for ordinary differential equations"  J.K. Hale (ed.) , ''Studies in ordinary differential equations'' , Math. Assoc. Amer.  (1977)  pp. 93–127</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Braun,  "Differential equations and their applications" , Springer  (1975)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E.L. Ince,  "Ordinary differential equations" , Dover, reprint  (1956)  pp. §§3.6, 3.51, 4.7, A.5</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  L.K. Jackson,  "Boundary value problems for ordinary differential equations"  J.K. Hale (ed.) , ''Studies in ordinary differential equations'' , Math. Assoc. Amer.  (1977)  pp. 93–127</TD></TR></table>

Latest revision as of 06:29, 30 May 2020


The problem of finding a solution to an equation

$$ \tag{1 } \frac{dx }{dt } = \ f (t, x),\ \ t \in J,\ \ x \in \mathbf R ^ {n} , $$

lying in a given subset $ D $ of the space $ D (J, \mathbf R ^ {n} ) $ of functions depending on $ t $ that are absolutely continuous on $ J $ and that assume values in $ \mathbf R ^ {n} $:

$$ \tag{2 } x ( \cdot ) \in D. $$

It is assumed that $ f (t, x) $ is a function defined on $ J \times \mathbf R ^ {n} $ with values in $ \mathbf R ^ {n} $ and satisfying the Carathéodory conditions; $ J $ is an interval on the real line $ \mathbf R $.

1) The boundary value problem (1), (2) is said to be linear if

$$ f (t, x) \equiv \ A (t) x + b (t), $$

where the functions $ A (t) $ and $ b (t) $ are summable on every compact interval in $ J $ and the set $ D $ is a linear manifold in $ D (J, \mathbf R ^ {n} ) $. In particular, one might have

$$ J = \ [t _ {0} , t _ {1} ], $$

$$ D = \left \{ x ( \cdot ) \in D (J, \mathbf R ^ {n} ): \int\limits _ { t _ {0} } ^ { {t _ 1 } } [d \Phi (t)] x (t) = 0 \right \} , $$

where $ \Phi (t) $ is a function of bounded variation. A linear boundary value problem gives rise to a linear operator

$$ Lx (t) \equiv \ x ^ \prime - A (t) x,\ \ x ( \cdot ) \in D, $$

the eigen values of which are precisely those values of the parameter $ \lambda $ for which the homogeneous boundary value problem

$$ x ^ \prime - A (t) x = \lambda x,\ \ x ( \cdot ) \in D, $$

has non-trivial solutions. These non-trivial solutions are the eigen functions of the operator $ L $. If the inverse operator $ L ^ {-1} $ exists and has an integral representation

$$ x (t) = \ L ^ {-1} b (t) \equiv \ \int\limits _ { J } G (t, s) b (s) ds,\ \ t \in J, $$

then $ G (t, s) $ is called a Green function.

2) Let $ J = (- \infty , \infty ) $, let $ f (t, x) $ be almost-periodic in $ t $ uniformly in $ x $ on every compact subset of $ \mathbf R ^ {n} $ and let $ D $ be the set of almost-periodic functions in $ t $ that are absolutely continuous on $ J $. Then problem (1), (2) is known as the problem of almost-periodic solutions.

3) In control theory one considers boundary value problems with a functional parameter: a control. For example, consider the equation

$$ \tag{3 } \frac{dx }{dt } = \ f (t, x, u),\ \ t \in J = [t _ {0} , t _ {1} ],\ \ x \in \mathbf R ^ {n} , $$

with set of admissible controls $ U $ and two sets $ M _ {0} , M _ {1} \subset \mathbf R ^ {n} $. Let $ D $ be the set of absolutely continuous functions in $ t $ such that $ x (t _ {0} ) \in M _ {0} $, $ x (t _ {1} ) \in M _ {1} $. The boundary value problem is to find a pair $ (x _ {0} ( \cdot ), u _ {0} ( \cdot )) $ such that $ u _ {0} ( \cdot ) \in U $ and the solution $ x _ {0} (t) $ of equation (3) at $ u = u _ {0} (t) $ satisfies the condition $ x _ {0} ( \cdot ) \in D $.

4) There is a wide range of diverse necessary and sufficient conditions for the existence and uniqueness of solutions to various boundary value problems, and of methods for constructing an approximate solution (see [4][7]). For example, consider the problem

$$ \tag{4 } \left . \begin{array}{c} x ^ \prime = A (t) x + f (t, x), \\ \int\limits _ { t _ {0} } ^ { {t _ 1 } } [d \Phi (t)] x (t) = 0, \end{array} \ \right \} $$

in which

$$ \| f (t, x) \| \leq a + b \ \| x \| ^ \alpha $$

for certain constants $ a > 0, b > 0, \alpha \geq 0 $. Suppose that the homogeneous problem

$$ \tag{5 } x ^ \prime = A (t) x,\ \ \int\limits _ { t _ {0} } ^ { {t _ 1 } } [d \Phi (t)] x (t) = 0 $$

is regular, i.e. its only solution is the trivial one. Then problem (4) has at least one solution, provided either $ \alpha < 1 $, or $ \alpha \geq 1 $ and $ b $ is sufficiently small. It is fairly complicated to determine whether problem (5) is regular. However, the linear (scalar) boundary value problem

$$ x ^ {\prime\prime} + q (t) x ^ \prime + p (t) x = 0,\ \ x (t _ {0} ) = 0,\ \ x (t _ {1} ) = 0, $$

for example, is regular if whenever $ | q (t) | \leq 2m $ there exists a $ k \in \mathbf R $ such that

$$ \int\limits _ { t _ {0} } ^ { {t _ 1 } } [p (t) - k] _ {+} dt < \ 2 [F (k, m) - m], $$

where

$$ F (k, m) = \ \left \{ \begin{array}{l} \sqrt {k - m ^ {2} } \mathop{\rm cotg} \ { \frac{(t _ {1} - t _ {0} ) \sqrt {k - m ^ {2} } }{2} } , \\ \ \ m ^ {2} < k \leq m ^ {2} + \frac{\pi ^ {2} }{(t _ {1} - t _ {0} ) ^ {2} } , \\ \frac{2}{t _ {1} - t _ {0} } ,\ \ k = m ^ {2} , \\ \sqrt {m ^ {2} - k } \ \mathop{\rm cotg} \ { \frac{(t _ {1} - t _ {0} ) \sqrt {m ^ {2} - k } }{2} } ,\ \ k < m ^ {2} . \\ \end{array} \right .$$

References

[1] P. Hartman, "Ordinary differential equations" , Birkhäuser (1982)
[2] M.A. Krasnosel'skii, V.Sh. Burd, Yu.S. Kolesov, "Nonlinear almost-periodic oscillations" , Wiley (1973) (Translated from Russian)
[3] L.S. Pontryagin, V.G. Boltayanskii, R.V. Gamkrelidze, E.F. Mishchenko, "The mathematical theory of optimal processes" , Interscience (1962) (Translated from Russian)
[4] N.N. Krasovskii, "Theory of control of motion. Linear systems" , Moscow (1968) (In Russian)
[5] V.I. Zubov, "Lectures in control theory" , Moscow (1975) (In Russian)
[6] E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , 1. Gewöhnliche Differentialgleichungen , Chelsea, reprint (1971)
[7] I.T. Kiguradze, "Some singular boundary value problems for ordinary differential equations" , Tbilisi (1975) (In Russian)

Comments

References

[a1] M. Braun, "Differential equations and their applications" , Springer (1975)
[a2] E.L. Ince, "Ordinary differential equations" , Dover, reprint (1956) pp. §§3.6, 3.51, 4.7, A.5
[a3] L.K. Jackson, "Boundary value problems for ordinary differential equations" J.K. Hale (ed.) , Studies in ordinary differential equations , Math. Assoc. Amer. (1977) pp. 93–127
How to Cite This Entry:
Boundary value problem, ordinary differential equations. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boundary_value_problem,_ordinary_differential_equations&oldid=17771
This article was adapted from an original article by Yu.V. KomlenkoE.L. Tonkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article