Difference between revisions of "Borel summation method"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | b0171701.png | ||
+ | $#A+1 = 32 n = 0 | ||
+ | $#C+1 = 32 : ~/encyclopedia/old_files/data/B017/B.0107170 Borel summation method | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A method for summing series of functions, proposed by E. Borel [[#References|[1]]]. Suppose one is given a series of numbers | A method for summing series of functions, proposed by E. Borel [[#References|[1]]]. Suppose one is given a series of numbers | ||
− | + | $$ \tag{* } | |
+ | \sum _ { k=0 } ^ \infty a _ {k} , | ||
+ | $$ | ||
+ | |||
+ | let $ S _ {n} $ | ||
+ | be its partial sums and let $ S $ | ||
+ | be a real number. The series (*) is summable by the Borel method ( $ B $- | ||
+ | method) to the number $ S $ | ||
+ | if | ||
− | + | $$ | |
+ | \lim\limits _ {x \rightarrow \infty } \ | ||
+ | e ^ {-x} | ||
+ | \sum _ { k=0 } ^ \infty | ||
− | + | \frac{x ^ {k} }{k!} | |
+ | S _ {k} = S . | ||
+ | $$ | ||
− | There exists an integral summation method due to Borel. This is the | + | There exists an integral summation method due to Borel. This is the $ B ^ { \prime } $- |
+ | method: If | ||
− | + | $$ | |
+ | \int\limits _ { 0 } ^ \infty | ||
+ | e ^ {-u} | ||
+ | \sum _ { k=0 } ^ \infty | ||
− | + | \frac{a _ {k} u ^ {k} }{k!} | |
+ | du = S, | ||
+ | $$ | ||
− | + | then one says that the series (*) is summable by the $ B ^ { \prime } $- | |
+ | method to the number $ S $. | ||
+ | For conditions under which the two methods $ B $ | ||
+ | and $ B ^ { \prime } $ | ||
+ | are equivalent, cf. [[#References|[2]]]. The $ B $- | ||
+ | method originated in the context of analytic extension of a function regular at a point. Let | ||
− | + | $$ | |
+ | f(z) = \sum _ { n=0 } ^ \infty a _ {n} z ^ {n} | ||
+ | $$ | ||
− | + | be regular at the point $ O $ | |
+ | and let $ C $ | ||
+ | be the set of all its singular points. Draw the segment $ OP $ | ||
+ | and the straight line $ L _ {P} $ | ||
+ | normal to $ OP $ | ||
+ | through any point $ P \in C $. | ||
+ | The set of points on the same side with $ O $ | ||
+ | for each straight line $ L _ {P} $ | ||
+ | is denoted by $ \Pi $; | ||
+ | the boundary $ \Gamma $ | ||
+ | of the domain $ \Pi $ | ||
+ | is then called the Borel polygon of the function $ f(z) $, | ||
+ | while the domain $ \Pi $ | ||
+ | is called its interior domain. The following theorem is valid: The series | ||
− | is summable by the | + | $$ |
+ | \sum _ { n=0 } ^ \infty | ||
+ | a _ {n} z ^ {n} | ||
+ | $$ | ||
+ | |||
+ | is summable by the $ B ^ { \prime } $- | ||
+ | method in $ \Pi $, | ||
+ | but not in the domain $ \Pi ^ {*} $ | ||
+ | which is the complement of $ \Pi $[[#References|[2]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Borel, "Mémoire sur les séries divergentes" ''Ann. Sci. École Norm. Sup. (3)'' , '''16''' (1899) pp. 9–131</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.H. Hardy, "Divergent series" , Clarendon Press (1949)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Borel, "Mémoire sur les séries divergentes" ''Ann. Sci. École Norm. Sup. (3)'' , '''16''' (1899) pp. 9–131</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.H. Hardy, "Divergent series" , Clarendon Press (1949)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Beekmann, K. Zeller, "Theorie der Limitierungsverfahren" , Springer (1970)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Beekmann, K. Zeller, "Theorie der Limitierungsverfahren" , Springer (1970)</TD></TR></table> |
Latest revision as of 06:28, 30 May 2020
A method for summing series of functions, proposed by E. Borel [1]. Suppose one is given a series of numbers
$$ \tag{* } \sum _ { k=0 } ^ \infty a _ {k} , $$
let $ S _ {n} $ be its partial sums and let $ S $ be a real number. The series (*) is summable by the Borel method ( $ B $- method) to the number $ S $ if
$$ \lim\limits _ {x \rightarrow \infty } \ e ^ {-x} \sum _ { k=0 } ^ \infty \frac{x ^ {k} }{k!} S _ {k} = S . $$
There exists an integral summation method due to Borel. This is the $ B ^ { \prime } $- method: If
$$ \int\limits _ { 0 } ^ \infty e ^ {-u} \sum _ { k=0 } ^ \infty \frac{a _ {k} u ^ {k} }{k!} du = S, $$
then one says that the series (*) is summable by the $ B ^ { \prime } $- method to the number $ S $. For conditions under which the two methods $ B $ and $ B ^ { \prime } $ are equivalent, cf. [2]. The $ B $- method originated in the context of analytic extension of a function regular at a point. Let
$$ f(z) = \sum _ { n=0 } ^ \infty a _ {n} z ^ {n} $$
be regular at the point $ O $ and let $ C $ be the set of all its singular points. Draw the segment $ OP $ and the straight line $ L _ {P} $ normal to $ OP $ through any point $ P \in C $. The set of points on the same side with $ O $ for each straight line $ L _ {P} $ is denoted by $ \Pi $; the boundary $ \Gamma $ of the domain $ \Pi $ is then called the Borel polygon of the function $ f(z) $, while the domain $ \Pi $ is called its interior domain. The following theorem is valid: The series
$$ \sum _ { n=0 } ^ \infty a _ {n} z ^ {n} $$
is summable by the $ B ^ { \prime } $- method in $ \Pi $, but not in the domain $ \Pi ^ {*} $ which is the complement of $ \Pi $[2].
References
[1] | E. Borel, "Mémoire sur les séries divergentes" Ann. Sci. École Norm. Sup. (3) , 16 (1899) pp. 9–131 |
[2] | G.H. Hardy, "Divergent series" , Clarendon Press (1949) |
Comments
References
[a1] | W. Beekmann, K. Zeller, "Theorie der Limitierungsverfahren" , Springer (1970) |
Borel summation method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Borel_summation_method&oldid=14305