Difference between revisions of "Boolean-valued model"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | b0169901.png | ||
+ | $#A+1 = 88 n = 0 | ||
+ | $#C+1 = 88 : ~/encyclopedia/old_files/data/B016/B.0106990 Boolean\AAhvalued model | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A model defined as follows. Let $ \Omega $ | |
+ | be the signature of some first-order language $ L $ | ||
+ | with one kind of variables, i.e. $ \Omega $ | ||
+ | is the set of symbols of functions and predicates. A Boolean-valued model then is a triple $ M = (B _ {M} , V _ {M} , \Omega _ {M} ) $, | ||
+ | where $ B _ {M} $ | ||
+ | is a non-degenerate [[Boolean algebra|Boolean algebra]], $ V _ {M} $ | ||
+ | is a non-empty set, and $ \Omega _ {M} $ | ||
+ | is a function defined on $ \Omega $ | ||
+ | such that | ||
− | + | $$ | |
+ | \Omega _ {M} ( \rho ) \in \ | ||
+ | V _ {M} ^ {V _ {M} ^ {n} } | ||
+ | $$ | ||
− | if | + | if $ \rho $ |
+ | is an $ n $- | ||
+ | place function symbol, and | ||
− | + | $$ | |
+ | \Omega _ {M} ( \rho ) \in \ | ||
+ | B _ {M} ^ {V _ {M} ^ {n} } | ||
+ | $$ | ||
− | + | if $ \rho $ | |
+ | is an $ n $- | ||
+ | place predicate symbol. The symbol $ X ^ {Y} $ | ||
+ | denotes the set of all functions defined on $ Y $ | ||
+ | with values in $ X $ | ||
+ | and $ X ^ {n} = X ^ {\{ {m } : {m<n } \} } $, | ||
+ | where $ n \geq 0 $ | ||
+ | is a natural number. The Boolean algebra $ B _ {M} $ | ||
+ | is called the set of truth values of the model $ M $. | ||
+ | The set $ V _ {M} $ | ||
+ | is called the universe of $ M $. | ||
+ | A Boolean-valued model $ M $ | ||
+ | is also called a $ B $- | ||
+ | model if the set of truth values is the Boolean algebra $ B $, | ||
+ | $ B _ {M} = B $. | ||
+ | If a Boolean algebra $ B $ | ||
+ | is a two-element algebra (i.e. $ B = \{ 0, 1 \} $), | ||
+ | then the $ B $- | ||
+ | model $ M $ | ||
+ | is the classical two-valued model. | ||
− | + | Let $ L _ {M} $ | |
+ | be a language, complemented by new individual constants: each $ v \in V _ {M} $ | ||
+ | having its own individual constant $ \mathbf v $. | ||
+ | Let $ M $ | ||
+ | be a $ B $- | ||
+ | model and let $ B = (B; 0, 1, C, \cup , \cap ) $ | ||
+ | be a complete Boolean algebra; the equalities 1)–8) below then define the value $ \| e \| _ {M} $ | ||
+ | of each closed expression $ e $( | ||
+ | i.e. of a formula or a term without free variables) of $ L _ {M} $: | ||
− | + | 1) $ \| \mathbf v \| _ {M} = v $, | |
+ | where $ v \in V _ {M} ; $ | ||
− | + | 2) $ \| \rho ( \tau _ {1} \dots t _ {n} ) \| _ {M} = ( \Omega _ {M} ( \rho )) ( \| \tau _ {1} \| _ {M} \dots \| \tau _ {n} \| _ {M} ), $ | |
+ | where $ \tau _ {1} \dots \tau _ {n} $ | ||
+ | are closed terms and $ \rho $ | ||
+ | is an $ n $- | ||
+ | place function or predicate symbol; | ||
− | + | 3) $ \| \phi \supset \psi \| _ {M} = - \| \phi \| _ {M} \cup \| \psi \| _ {M} ; $ | |
− | + | 4) $ \| \phi \lor \psi \| _ {M} = \| \phi \| _ {M} \cup \| \psi \| _ {M} ; $ | |
− | + | 5) $ \| \phi \wedge \psi \| _ {M} = \| \phi \| _ {M} \cap \| \psi \| _ {M} ; $ | |
− | + | 6) $ \| \neg \phi \| _ {M} = - \| \phi \| _ {M} ; $ | |
− | + | 7) $ \| \exists \xi \phi ( \xi ) \| _ {M} = \cup _ {v \in V _ {M} } \| \phi ( \mathbf v ) \| _ {M} ; $ | |
− | + | 8) $ \| \forall \xi \phi ( \xi ) \| _ {M} = \cap _ {v \in V _ {M} } \| \phi ( \mathbf v ) \| _ {M} . $ | |
− | + | The relations 1)–8) define the value $ \| e \| _ {M} $ | |
+ | for certain non-complete Boolean algebras as well; the only condition is that the infinite unions and intersections in 7) and 8) exist. The concept of a Boolean-valued model can also be introduced for languages with more than one kind of variables. In such a case each kind of variable has its own domain of variation $ V _ {M} $. | ||
− | A | + | A closed formula $ \phi $ |
+ | is said to be true in a $ B $- | ||
+ | model $ M $( | ||
+ | $ M \vDash \phi $) | ||
+ | if | ||
− | + | $$ | |
+ | \| \phi \| _ {M} = 1. | ||
+ | $$ | ||
− | for | + | A $ B $- |
+ | model $ M $ | ||
+ | is said to be a model of a theory $ T $ | ||
+ | if $ M \vDash \phi $ | ||
+ | for all axioms $ \phi $ | ||
+ | of $ T $. | ||
+ | If $ h $ | ||
+ | is a homomorphism of a Boolean algebra $ B $ | ||
+ | into a Boolean algebra $ B ^ { \prime } $ | ||
+ | preserving infinite unions and intersections, then there exists a $ B ^ { \prime } $ | ||
+ | model $ M ^ \prime $ | ||
+ | such that | ||
− | + | $$ | |
+ | \| \phi \| _ {M ^ \prime } = \ | ||
+ | h ( \| \phi \| _ {M} ) | ||
+ | $$ | ||
− | + | for each closed formula $ \phi $ | |
+ | of $ L _ {M} $. | ||
+ | If the universe of a model $ M $ | ||
+ | is countable, then there exists a homomorphism $ h $ | ||
+ | into the Boolean algebra $ \{ 0, 1 \} $, | ||
+ | under which $ M $ | ||
+ | is transformed into the classical two-valued model $ M ^ \prime $ | ||
+ | such that | ||
− | + | $$ | |
+ | M \vDash \phi \rightarrow M ^ \prime \vDash \phi . | ||
+ | $$ | ||
− | + | It has been shown that a theory $ T $ | |
+ | is consistent if and only if it has a Boolean-valued model. This theorem forms the basis of the application of the theory of Boolean-valued models to problems of the consistency of axiomatic theories. | ||
+ | |||
+ | If the Boolean-valued model of a theory $ T $ | ||
+ | is constructed by means of another axiomatic theory $ S $, | ||
+ | then one obtains the statement on the consistency of $ T $ | ||
+ | relative to $ S $. | ||
+ | Thus, the result due to P. Cohen on the consistency of the theory $ \mathop{\rm ZF} + (2 ^ {\aleph _ {0} } > \aleph _ {1)} $ | ||
+ | relative to ZF is obtained by constructing the respective Boolean-valued model by means of the system ZF (cf. [[Forcing method|Forcing method]]). The construction of the Cohen forcing relation $ p \lTb \phi $ | ||
+ | is equivalent to that of a Boolean-valued model $ M $ | ||
+ | such that | ||
+ | |||
+ | $$ | ||
+ | \| \phi \| _ {M} = \{ {p } : {p \lTb \neg \neg \phi } \} | ||
+ | . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Rasiowa, R. Sikorski, "The mathematics of metamathematics" , Polska Akad. Nauk (1963)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> T.J. Jech, "Lectures in set theory: with particular emphasis on the method of forcing" , ''Lect. notes in math.'' , '''217''' , Springer (1971)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G. Takeuti, W.M. Zaring, "Axiomatic set theory" , Springer (1973)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> Yu.I. Manin, "The problem of the continuum" ''J. Soviet Math.'' , '''5''' : 4 (1976) pp. 451–502 ''Itogi Nauk. i Tekhn. Sovrem. Problemy'' , '''5''' (1975) pp. 5–73</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Rasiowa, R. Sikorski, "The mathematics of metamathematics" , Polska Akad. Nauk (1963)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> T.J. Jech, "Lectures in set theory: with particular emphasis on the method of forcing" , ''Lect. notes in math.'' , '''217''' , Springer (1971)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G. Takeuti, W.M. Zaring, "Axiomatic set theory" , Springer (1973)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> Yu.I. Manin, "The problem of the continuum" ''J. Soviet Math.'' , '''5''' : 4 (1976) pp. 451–502 ''Itogi Nauk. i Tekhn. Sovrem. Problemy'' , '''5''' (1975) pp. 5–73</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.L. Bell, "Boolean-valued models and independence proofs in set theory" , Clarendon Press (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> T.J. Jech, "Set theory" , Acad. Press (1978) (Translated from German)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> K. Kunen, "Set theory" , North-Holland (1980)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.L. Bell, "Boolean-valued models and independence proofs in set theory" , Clarendon Press (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> T.J. Jech, "Set theory" , Acad. Press (1978) (Translated from German)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> K. Kunen, "Set theory" , North-Holland (1980)</TD></TR></table> |
Revision as of 10:59, 29 May 2020
A model defined as follows. Let $ \Omega $
be the signature of some first-order language $ L $
with one kind of variables, i.e. $ \Omega $
is the set of symbols of functions and predicates. A Boolean-valued model then is a triple $ M = (B _ {M} , V _ {M} , \Omega _ {M} ) $,
where $ B _ {M} $
is a non-degenerate Boolean algebra, $ V _ {M} $
is a non-empty set, and $ \Omega _ {M} $
is a function defined on $ \Omega $
such that
$$ \Omega _ {M} ( \rho ) \in \ V _ {M} ^ {V _ {M} ^ {n} } $$
if $ \rho $ is an $ n $- place function symbol, and
$$ \Omega _ {M} ( \rho ) \in \ B _ {M} ^ {V _ {M} ^ {n} } $$
if $ \rho $ is an $ n $- place predicate symbol. The symbol $ X ^ {Y} $ denotes the set of all functions defined on $ Y $ with values in $ X $ and $ X ^ {n} = X ^ {\{ {m } : {m<n } \} } $, where $ n \geq 0 $ is a natural number. The Boolean algebra $ B _ {M} $ is called the set of truth values of the model $ M $. The set $ V _ {M} $ is called the universe of $ M $. A Boolean-valued model $ M $ is also called a $ B $- model if the set of truth values is the Boolean algebra $ B $, $ B _ {M} = B $. If a Boolean algebra $ B $ is a two-element algebra (i.e. $ B = \{ 0, 1 \} $), then the $ B $- model $ M $ is the classical two-valued model.
Let $ L _ {M} $ be a language, complemented by new individual constants: each $ v \in V _ {M} $ having its own individual constant $ \mathbf v $. Let $ M $ be a $ B $- model and let $ B = (B; 0, 1, C, \cup , \cap ) $ be a complete Boolean algebra; the equalities 1)–8) below then define the value $ \| e \| _ {M} $ of each closed expression $ e $( i.e. of a formula or a term without free variables) of $ L _ {M} $:
1) $ \| \mathbf v \| _ {M} = v $, where $ v \in V _ {M} ; $
2) $ \| \rho ( \tau _ {1} \dots t _ {n} ) \| _ {M} = ( \Omega _ {M} ( \rho )) ( \| \tau _ {1} \| _ {M} \dots \| \tau _ {n} \| _ {M} ), $ where $ \tau _ {1} \dots \tau _ {n} $ are closed terms and $ \rho $ is an $ n $- place function or predicate symbol;
3) $ \| \phi \supset \psi \| _ {M} = - \| \phi \| _ {M} \cup \| \psi \| _ {M} ; $
4) $ \| \phi \lor \psi \| _ {M} = \| \phi \| _ {M} \cup \| \psi \| _ {M} ; $
5) $ \| \phi \wedge \psi \| _ {M} = \| \phi \| _ {M} \cap \| \psi \| _ {M} ; $
6) $ \| \neg \phi \| _ {M} = - \| \phi \| _ {M} ; $
7) $ \| \exists \xi \phi ( \xi ) \| _ {M} = \cup _ {v \in V _ {M} } \| \phi ( \mathbf v ) \| _ {M} ; $
8) $ \| \forall \xi \phi ( \xi ) \| _ {M} = \cap _ {v \in V _ {M} } \| \phi ( \mathbf v ) \| _ {M} . $
The relations 1)–8) define the value $ \| e \| _ {M} $ for certain non-complete Boolean algebras as well; the only condition is that the infinite unions and intersections in 7) and 8) exist. The concept of a Boolean-valued model can also be introduced for languages with more than one kind of variables. In such a case each kind of variable has its own domain of variation $ V _ {M} $.
A closed formula $ \phi $ is said to be true in a $ B $- model $ M $( $ M \vDash \phi $) if
$$ \| \phi \| _ {M} = 1. $$
A $ B $- model $ M $ is said to be a model of a theory $ T $ if $ M \vDash \phi $ for all axioms $ \phi $ of $ T $. If $ h $ is a homomorphism of a Boolean algebra $ B $ into a Boolean algebra $ B ^ { \prime } $ preserving infinite unions and intersections, then there exists a $ B ^ { \prime } $ model $ M ^ \prime $ such that
$$ \| \phi \| _ {M ^ \prime } = \ h ( \| \phi \| _ {M} ) $$
for each closed formula $ \phi $ of $ L _ {M} $. If the universe of a model $ M $ is countable, then there exists a homomorphism $ h $ into the Boolean algebra $ \{ 0, 1 \} $, under which $ M $ is transformed into the classical two-valued model $ M ^ \prime $ such that
$$ M \vDash \phi \rightarrow M ^ \prime \vDash \phi . $$
It has been shown that a theory $ T $ is consistent if and only if it has a Boolean-valued model. This theorem forms the basis of the application of the theory of Boolean-valued models to problems of the consistency of axiomatic theories.
If the Boolean-valued model of a theory $ T $ is constructed by means of another axiomatic theory $ S $, then one obtains the statement on the consistency of $ T $ relative to $ S $. Thus, the result due to P. Cohen on the consistency of the theory $ \mathop{\rm ZF} + (2 ^ {\aleph _ {0} } > \aleph _ {1)} $ relative to ZF is obtained by constructing the respective Boolean-valued model by means of the system ZF (cf. Forcing method). The construction of the Cohen forcing relation $ p \lTb \phi $ is equivalent to that of a Boolean-valued model $ M $ such that
$$ \| \phi \| _ {M} = \{ {p } : {p \lTb \neg \neg \phi } \} . $$
References
[1] | E. Rasiowa, R. Sikorski, "The mathematics of metamathematics" , Polska Akad. Nauk (1963) |
[2] | T.J. Jech, "Lectures in set theory: with particular emphasis on the method of forcing" , Lect. notes in math. , 217 , Springer (1971) |
[3] | G. Takeuti, W.M. Zaring, "Axiomatic set theory" , Springer (1973) |
[4] | Yu.I. Manin, "The problem of the continuum" J. Soviet Math. , 5 : 4 (1976) pp. 451–502 Itogi Nauk. i Tekhn. Sovrem. Problemy , 5 (1975) pp. 5–73 |
Comments
References
[a1] | J.L. Bell, "Boolean-valued models and independence proofs in set theory" , Clarendon Press (1977) |
[a2] | T.J. Jech, "Set theory" , Acad. Press (1978) (Translated from German) |
[a3] | K. Kunen, "Set theory" , North-Holland (1980) |
Boolean-valued model. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boolean-valued_model&oldid=17991