Difference between revisions of "Bipolar coordinates"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | b0164701.png | ||
+ | $#A+1 = 29 n = 0 | ||
+ | $#C+1 = 29 : ~/encyclopedia/old_files/data/B016/B.0106470 Bipolar coordinates | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The numbers $ \tau $ | |
+ | and $ \sigma $ | ||
+ | which are connected with the Cartesian orthogonal coordinates $ x $ | ||
+ | and $ y $ | ||
+ | by the formulas | ||
+ | |||
+ | $$ | ||
+ | x = | ||
+ | \frac{a \sinh \tau }{\cosh \tau - \cos \sigma } | ||
+ | ,\ \ | ||
+ | y = | ||
+ | \frac{a \sin \sigma }{\cosh \tau - \cos \sigma } | ||
+ | , | ||
+ | $$ | ||
+ | |||
+ | where $ 0 \leq \sigma < \pi , -\infty < \tau < \infty $. | ||
+ | The coordinate lines are two families of circles $ ( \tau = \textrm{ const } ) $ | ||
+ | with poles $ A $ | ||
+ | and $ B $ | ||
+ | and the (half-c)ircles orthogonal with these $ ( \sigma = \textrm{ const } ) $. | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/b016470a.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/b016470a.gif" /> | ||
Line 11: | Line 38: | ||
The Lamé coefficients are: | The Lamé coefficients are: | ||
− | + | $$ | |
+ | L _ \tau = L _ \sigma = \ | ||
+ | |||
+ | \frac{a ^ {2} }{( \cosh \tau - \cos \sigma ) ^ {2} } | ||
+ | . | ||
+ | $$ | ||
The Laplace operator is: | The Laplace operator is: | ||
− | + | $$ | |
+ | \Delta f = | ||
+ | \frac{1}{a ^ {2} } | ||
+ | |||
+ | ( \cosh \tau - \cos \sigma ) ^ {2} | ||
+ | \left ( | ||
+ | |||
+ | \frac{\partial ^ {2} f }{\partial \sigma ^ {2} } | ||
+ | + | ||
+ | |||
+ | \frac{\partial ^ {2} f }{\partial \tau ^ {2} } | ||
+ | \ | ||
+ | \right ) . | ||
+ | $$ | ||
− | Bipolar coordinates in space (bispherical coordinates) are the numbers | + | Bipolar coordinates in space (bispherical coordinates) are the numbers $ \sigma , \tau $ |
+ | and $ \phi $, | ||
+ | which are connected with the orthogonal Cartesian coordinates $ x, y $ | ||
+ | and $ z $ | ||
+ | by the formulas: | ||
− | + | $$ | |
+ | x = | ||
+ | \frac{a \sin \sigma \cos \phi }{\cosh \tau - \cos \sigma } | ||
+ | , | ||
+ | $$ | ||
− | + | $$ | |
+ | y = | ||
+ | \frac{a \sin \sigma \sin \phi }{\cosh \tau - \cos \sigma } | ||
+ | , | ||
+ | $$ | ||
− | + | $$ | |
+ | z = | ||
+ | \frac{a \sinh \tau }{\cosh \tau - \cos \sigma } | ||
+ | , | ||
+ | $$ | ||
− | where < | + | where $ - \infty < \sigma < \infty , 0 \leq \tau < \pi , 0 \leq \phi < 2 \pi $. |
+ | The coordinate surfaces are spheres ( $ \sigma = \textrm{ const } $), | ||
+ | the surfaces obtained by rotation of arcs of circles ( $ \tau = \textrm{ const } $) | ||
+ | and half-planes passing through the $ Oz $- | ||
+ | axis. The system of bipolar coordinates in space is formed by rotating the system of bipolar coordinates on the plane $ Oxy $ | ||
+ | around the $ Oz $- | ||
+ | axis. | ||
The Lamé coefficients are: | The Lamé coefficients are: | ||
− | + | $$ | |
+ | L _ \sigma = \ | ||
+ | L _ \tau = \ | ||
+ | |||
+ | \frac{a ^ {2} }{( \cosh \tau - \cos \sigma ) ^ {2} } | ||
+ | , | ||
+ | $$ | ||
− | + | $$ | |
+ | L _ \phi = | ||
+ | \frac{a ^ {2} \sin ^ {2} \sigma }{( \cosh \tau - \cos \sigma ) ^ {2} } | ||
+ | . | ||
+ | $$ | ||
The Laplace operator is: | The Laplace operator is: | ||
− | + | $$ | |
+ | \Delta f = \ | ||
+ | |||
+ | \frac{( \cosh \tau - \cosh \sigma ) ^ {3} }{a ^ {2} \sin \sigma } | ||
+ | \left [ | ||
+ | |||
+ | \frac \partial {\partial \tau } | ||
+ | \left ( | ||
+ | |||
+ | \frac{\sin \sigma }{\cosh \tau - \cos \sigma } | ||
+ | |||
+ | \frac{\partial f }{\partial \tau } | ||
+ | \ | ||
+ | \right )\right . + | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | + \left . | ||
+ | |||
+ | \frac \partial {\partial \sigma } | ||
+ | \left ( | ||
+ | \frac{\sin \sigma | ||
+ | }{\cosh \tau - \cos \sigma } | ||
+ | |||
+ | \frac{\partial f }{\partial \sigma } | ||
− | + | \right ) + | |
+ | \frac{1}{\sin \sigma ( \cosh \tau - \cos | ||
+ | \sigma ) } | ||
+ | |||
+ | \frac{\partial ^ {2} f }{\partial \phi ^ {2} } | ||
+ | \right ] . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Madelung, "Die mathematischen Hilfsmittel des Physikers" , Springer (1957)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Madelung, "Die mathematischen Hilfsmittel des Physikers" , Springer (1957)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> O. Veblen, J.H.C. Whitehead, "The foundations of differential geometry" , Cambridge Univ. Press (1932)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> O. Veblen, J.H.C. Whitehead, "The foundations of differential geometry" , Cambridge Univ. Press (1932)</TD></TR></table> |
Revision as of 10:59, 29 May 2020
The numbers $ \tau $
and $ \sigma $
which are connected with the Cartesian orthogonal coordinates $ x $
and $ y $
by the formulas
$$ x = \frac{a \sinh \tau }{\cosh \tau - \cos \sigma } ,\ \ y = \frac{a \sin \sigma }{\cosh \tau - \cos \sigma } , $$
where $ 0 \leq \sigma < \pi , -\infty < \tau < \infty $. The coordinate lines are two families of circles $ ( \tau = \textrm{ const } ) $ with poles $ A $ and $ B $ and the (half-c)ircles orthogonal with these $ ( \sigma = \textrm{ const } ) $.
Figure: b016470a
The Lamé coefficients are:
$$ L _ \tau = L _ \sigma = \ \frac{a ^ {2} }{( \cosh \tau - \cos \sigma ) ^ {2} } . $$
The Laplace operator is:
$$ \Delta f = \frac{1}{a ^ {2} } ( \cosh \tau - \cos \sigma ) ^ {2} \left ( \frac{\partial ^ {2} f }{\partial \sigma ^ {2} } + \frac{\partial ^ {2} f }{\partial \tau ^ {2} } \ \right ) . $$
Bipolar coordinates in space (bispherical coordinates) are the numbers $ \sigma , \tau $ and $ \phi $, which are connected with the orthogonal Cartesian coordinates $ x, y $ and $ z $ by the formulas:
$$ x = \frac{a \sin \sigma \cos \phi }{\cosh \tau - \cos \sigma } , $$
$$ y = \frac{a \sin \sigma \sin \phi }{\cosh \tau - \cos \sigma } , $$
$$ z = \frac{a \sinh \tau }{\cosh \tau - \cos \sigma } , $$
where $ - \infty < \sigma < \infty , 0 \leq \tau < \pi , 0 \leq \phi < 2 \pi $. The coordinate surfaces are spheres ( $ \sigma = \textrm{ const } $), the surfaces obtained by rotation of arcs of circles ( $ \tau = \textrm{ const } $) and half-planes passing through the $ Oz $- axis. The system of bipolar coordinates in space is formed by rotating the system of bipolar coordinates on the plane $ Oxy $ around the $ Oz $- axis.
The Lamé coefficients are:
$$ L _ \sigma = \ L _ \tau = \ \frac{a ^ {2} }{( \cosh \tau - \cos \sigma ) ^ {2} } , $$
$$ L _ \phi = \frac{a ^ {2} \sin ^ {2} \sigma }{( \cosh \tau - \cos \sigma ) ^ {2} } . $$
The Laplace operator is:
$$ \Delta f = \ \frac{( \cosh \tau - \cosh \sigma ) ^ {3} }{a ^ {2} \sin \sigma } \left [ \frac \partial {\partial \tau } \left ( \frac{\sin \sigma }{\cosh \tau - \cos \sigma } \frac{\partial f }{\partial \tau } \ \right )\right . + $$
$$ + \left . \frac \partial {\partial \sigma } \left ( \frac{\sin \sigma }{\cosh \tau - \cos \sigma } \frac{\partial f }{\partial \sigma } \right ) + \frac{1}{\sin \sigma ( \cosh \tau - \cos \sigma ) } \frac{\partial ^ {2} f }{\partial \phi ^ {2} } \right ] . $$
References
[1] | E. Madelung, "Die mathematischen Hilfsmittel des Physikers" , Springer (1957) |
Comments
References
[a1] | O. Veblen, J.H.C. Whitehead, "The foundations of differential geometry" , Cambridge Univ. Press (1932) |
Bipolar coordinates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bipolar_coordinates&oldid=11655