|
|
Line 1: |
Line 1: |
− | With respect to the approximation of elements in a given set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b0159301.png" />, the linear method that yields the smallest error among all linear methods. In a normed linear space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b0159302.png" />, a linear method for the approximation of elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b0159303.png" /> by elements of a fixed subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b0159304.png" /> is represented by a linear operator that maps the entire space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b0159305.png" />, or some linear manifold containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b0159306.png" />, into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b0159307.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b0159308.png" /> is the set of all such operators, a best linear method for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b0159309.png" /> (if it exists) is defined by an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593010.png" /> for which
| + | <!-- |
| + | b0159301.png |
| + | $#A+1 = 85 n = 0 |
| + | $#C+1 = 85 : ~/encyclopedia/old_files/data/B015/B.0105930 Best linear method |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593011.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | The method defined by an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593012.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593013.png" /> will certainly be a best linear method for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593014.png" /> relative to the approximating set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593015.png" /> if, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593016.png" />,
| + | With respect to the approximation of elements in a given set $ \mathfrak M $, |
| + | the linear method that yields the smallest error among all linear methods. In a normed linear space $ X $, |
| + | a linear method for the approximation of elements $ x \in \mathfrak M \subset X $ |
| + | by elements of a fixed subspace $ F \subset X $ |
| + | is represented by a linear operator that maps the entire space $ X $, |
| + | or some linear manifold containing $ \mathfrak M $, |
| + | into $ F $. |
| + | If $ {\mathcal L} $ |
| + | is the set of all such operators, a best linear method for $ \mathfrak M $( |
| + | if it exists) is defined by an operator $ \widetilde{A} \in {\mathcal L} $ |
| + | for which |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593017.png" /></td> </tr></table>
| + | $$ |
| + | \sup _ {x \in \mathfrak M } \ |
| + | \| x - \widetilde{A} x \| = \ |
| + | \inf _ {A \in {\mathcal L} } \ |
| + | \sup _ {x \in \mathfrak M } \ |
| + | \| x - Ax \| . |
| + | $$ |
| | | |
− | (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593018.png" /> is the [[Best approximation|best approximation]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593019.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593020.png" />) and if, moreover, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593021.png" />,
| + | The method defined by an operator $ A $ |
| + | in $ {\mathcal L} $ |
| + | will certainly be a best linear method for $ \mathfrak M $ |
| + | relative to the approximating set $ F $ |
| + | if, for all $ x \in \mathfrak M $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593022.png" /></td> </tr></table>
| + | $$ |
| + | \| x - Ax \| \leq \ |
| + | \sup _ {x \in \mathfrak M } E (x, F) |
| + | $$ |
| | | |
− | The latter is certainly true if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593023.png" /> is a Hilbert space, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593024.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593025.png" />-dimensional subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593028.png" /> is the orthogonal projection onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593029.png" />, i.e.
| + | ( $ E (x, F) $ |
| + | is the [[Best approximation|best approximation]] of $ x $ |
| + | by $ F $) |
| + | and if, moreover, for all $ x \in X $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593030.png" /></td> </tr></table>
| + | $$ |
| + | \| x - Ax \| = E (x, F). |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593031.png" /> is an orthonormal basis in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593032.png" />.
| + | The latter is certainly true if $ X $ |
| + | is a Hilbert space, $ F = F _ {n} $ |
| + | is an $ n $- |
| + | dimensional subspace of $ X $, |
| + | $ n = 1, 2 \dots $ |
| + | and $ A $ |
| + | is the orthogonal projection onto $ F _ {n} $, |
| + | i.e. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593033.png" /> be a Banach space of functions defined on the entire real line, with a translation-invariant norm: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593034.png" /> (this condition holds, e.g. for the norms of the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593037.png" />, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593038.png" />-periodic functions); let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593039.png" /> be the subspace of trigonometric polynomials of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593040.png" />. There exist best linear methods (relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593041.png" />) for a class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593042.png" /> of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593043.png" /> that contains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593044.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593045.png" /> whenever it contains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593046.png" />. An example is the linear method
| + | $$ |
| + | Ax = \ |
| + | \sum _ {k = 1 } ^ { n } (x, e _ {k} ) e _ {k} , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593047.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
| + | where $ \{ e _ {1} \dots e _ {n} \} $ |
| + | is an orthonormal basis in $ F _ {n} $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593048.png" /></td> </tr></table>
| + | Let $ X $ |
| + | be a Banach space of functions defined on the entire real line, with a translation-invariant norm: $ \| x ( \cdot + \tau ) \| = \| x ( \cdot ) \| $( |
| + | this condition holds, e.g. for the norms of the spaces $ C = C [0, 2 \pi ] $ |
| + | and $ L _ {p} = L _ {p} (0, 2 \pi ) $, |
| + | $ 1 \leq p \leq \infty $, |
| + | of $ 2 \pi $- |
| + | periodic functions); let $ F = T _ {n} $ |
| + | be the subspace of trigonometric polynomials of order $ n $. |
| + | There exist best linear methods (relative to $ T _ {n} $) |
| + | for a class $ \mathfrak M $ |
| + | of functions $ x (t) \in X $ |
| + | that contains $ x (t + \alpha ) $ |
| + | for any $ \alpha \in \mathbf R $ |
| + | whenever it contains $ x (t) $. |
| + | An example is the linear method |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593050.png" /> are the Fourier coefficients of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593051.png" /> relative to the trigonometric system, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593053.png" /> are numbers.
| + | $$ \tag{* } |
| + | A (x; t; \mu , \nu ) = |
| + | \frac{\mu _ {0} a _ {0} }{2} |
| + | + |
| + | $$ |
| | | |
− | Now consider the classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593054.png" /> (and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593055.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593056.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593057.png" />-periodic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593058.png" /> whose derivatives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593059.png" /> are locally absolutely continuous and whose derivatives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593060.png" /> are bounded in norm in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593061.png" /> (respectively, in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593062.png" />) by a number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593063.png" />. For these classes, best linear methods of the type (*) yield the same error (over the entire class) in the metric of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593064.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593065.png" />) as the best approximation by a subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593066.png" />; the analogous assertion is true for these classes with any rational number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593067.png" /> (interpreting the derivatives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593068.png" /> in the sense of Weyl). For integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593069.png" /> best linear methods of type (*) have been constructed using only the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593070.png" /> (all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593071.png" />).
| + | $$ |
| + | + |
| + | \sum _ {k = 1 } ^ { n } \{ \mu _ {k} (a _ {k} \cos kt + b _ {k} \ |
| + | \sin kt) + \nu _ {k} (a _ {k} \sin kt - b _ {k} \cos kt) \} , |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593072.png" /> is the subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593073.png" />-periodic polynomial splines of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593074.png" /> and defect 1 with respect to the partition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593075.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593076.png" /> then a best linear method for the classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593077.png" /> (and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593078.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593079.png" /> is achieved in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593080.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593081.png" /> (resp. in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593082.png" />) by splines in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593083.png" /> interpolating the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593084.png" /> at the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015930/b01593085.png" />.
| + | where $ a _ {k} $ |
| + | and $ b _ {k} $ |
| + | are the Fourier coefficients of $ x (t) $ |
| + | relative to the trigonometric system, and $ \mu _ {k} $ |
| + | and $ \nu _ {k} $ |
| + | are numbers. |
| + | |
| + | Now consider the classes $ W _ \infty ^ {r} M $( |
| + | and $ W _ {1} ^ {r} M $), |
| + | $ r = 1, 2 \dots $ |
| + | of $ 2 \pi $- |
| + | periodic functions $ x (t) $ |
| + | whose derivatives $ x ^ {(r - 1) } (t) $ |
| + | are locally absolutely continuous and whose derivatives $ x ^ {(r)} (t) $ |
| + | are bounded in norm in $ L _ \infty $( |
| + | respectively, in $ L _ {1} $) |
| + | by a number $ M $. |
| + | For these classes, best linear methods of the type (*) yield the same error (over the entire class) in the metric of $ C $( |
| + | respectively, $ L _ {1} $) |
| + | as the best approximation by a subspace $ T _ {n} $; |
| + | the analogous assertion is true for these classes with any rational number $ r > 0 $( |
| + | interpreting the derivatives $ x ^ {(r)} (t) $ |
| + | in the sense of Weyl). For integers $ r = 1, 2 \dots $ |
| + | best linear methods of type (*) have been constructed using only the coefficients $ \mu _ {k} $( |
| + | all $ \nu _ {k} = 0 $). |
| + | |
| + | If $ F = S _ {n} ^ {r} $ |
| + | is the subspace of $ 2 \pi $- |
| + | periodic polynomial splines of order $ r $ |
| + | and defect 1 with respect to the partition $ k \pi /n $, |
| + | $ k = 0, \pm 1 \dots $ |
| + | then a best linear method for the classes $ W _ \infty ^ {r + 1 } M $( |
| + | and $ W _ {1} ^ {r + 1 } $), |
| + | $ r = 1, 2 \dots $ |
| + | is achieved in $ L _ {p} $, |
| + | $ 1 \leq p \leq \infty $( |
| + | resp. in $ L _ {1} $) |
| + | by splines in $ S _ {n} ^ {r} $ |
| + | interpolating the function $ x (t) $ |
| + | at the points $ k \pi /n + [1 + (-1) ^ {r} ] \pi /4n $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.P. Korneichuk, "Extremal problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.M. Tikhomirov, "Some problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.P. Korneichuk, "Extremal problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.M. Tikhomirov, "Some problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− |
| |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Kiesewetter, "Vorlesungen über lineare Approximation" , Deutsch. Verlag Wissenschaft. (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.R. Rice, "The approximation of functions" , '''1. Linear theory''' , Addison-Wesley (1964)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Kiesewetter, "Vorlesungen über lineare Approximation" , Deutsch. Verlag Wissenschaft. (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.R. Rice, "The approximation of functions" , '''1. Linear theory''' , Addison-Wesley (1964)</TD></TR></table> |
With respect to the approximation of elements in a given set $ \mathfrak M $,
the linear method that yields the smallest error among all linear methods. In a normed linear space $ X $,
a linear method for the approximation of elements $ x \in \mathfrak M \subset X $
by elements of a fixed subspace $ F \subset X $
is represented by a linear operator that maps the entire space $ X $,
or some linear manifold containing $ \mathfrak M $,
into $ F $.
If $ {\mathcal L} $
is the set of all such operators, a best linear method for $ \mathfrak M $(
if it exists) is defined by an operator $ \widetilde{A} \in {\mathcal L} $
for which
$$
\sup _ {x \in \mathfrak M } \
\| x - \widetilde{A} x \| = \
\inf _ {A \in {\mathcal L} } \
\sup _ {x \in \mathfrak M } \
\| x - Ax \| .
$$
The method defined by an operator $ A $
in $ {\mathcal L} $
will certainly be a best linear method for $ \mathfrak M $
relative to the approximating set $ F $
if, for all $ x \in \mathfrak M $,
$$
\| x - Ax \| \leq \
\sup _ {x \in \mathfrak M } E (x, F)
$$
( $ E (x, F) $
is the best approximation of $ x $
by $ F $)
and if, moreover, for all $ x \in X $,
$$
\| x - Ax \| = E (x, F).
$$
The latter is certainly true if $ X $
is a Hilbert space, $ F = F _ {n} $
is an $ n $-
dimensional subspace of $ X $,
$ n = 1, 2 \dots $
and $ A $
is the orthogonal projection onto $ F _ {n} $,
i.e.
$$
Ax = \
\sum _ {k = 1 } ^ { n } (x, e _ {k} ) e _ {k} ,
$$
where $ \{ e _ {1} \dots e _ {n} \} $
is an orthonormal basis in $ F _ {n} $.
Let $ X $
be a Banach space of functions defined on the entire real line, with a translation-invariant norm: $ \| x ( \cdot + \tau ) \| = \| x ( \cdot ) \| $(
this condition holds, e.g. for the norms of the spaces $ C = C [0, 2 \pi ] $
and $ L _ {p} = L _ {p} (0, 2 \pi ) $,
$ 1 \leq p \leq \infty $,
of $ 2 \pi $-
periodic functions); let $ F = T _ {n} $
be the subspace of trigonometric polynomials of order $ n $.
There exist best linear methods (relative to $ T _ {n} $)
for a class $ \mathfrak M $
of functions $ x (t) \in X $
that contains $ x (t + \alpha ) $
for any $ \alpha \in \mathbf R $
whenever it contains $ x (t) $.
An example is the linear method
$$ \tag{* }
A (x; t; \mu , \nu ) =
\frac{\mu _ {0} a _ {0} }{2}
+
$$
$$
+
\sum _ {k = 1 } ^ { n } \{ \mu _ {k} (a _ {k} \cos kt + b _ {k} \
\sin kt) + \nu _ {k} (a _ {k} \sin kt - b _ {k} \cos kt) \} ,
$$
where $ a _ {k} $
and $ b _ {k} $
are the Fourier coefficients of $ x (t) $
relative to the trigonometric system, and $ \mu _ {k} $
and $ \nu _ {k} $
are numbers.
Now consider the classes $ W _ \infty ^ {r} M $(
and $ W _ {1} ^ {r} M $),
$ r = 1, 2 \dots $
of $ 2 \pi $-
periodic functions $ x (t) $
whose derivatives $ x ^ {(r - 1) } (t) $
are locally absolutely continuous and whose derivatives $ x ^ {(r)} (t) $
are bounded in norm in $ L _ \infty $(
respectively, in $ L _ {1} $)
by a number $ M $.
For these classes, best linear methods of the type (*) yield the same error (over the entire class) in the metric of $ C $(
respectively, $ L _ {1} $)
as the best approximation by a subspace $ T _ {n} $;
the analogous assertion is true for these classes with any rational number $ r > 0 $(
interpreting the derivatives $ x ^ {(r)} (t) $
in the sense of Weyl). For integers $ r = 1, 2 \dots $
best linear methods of type (*) have been constructed using only the coefficients $ \mu _ {k} $(
all $ \nu _ {k} = 0 $).
If $ F = S _ {n} ^ {r} $
is the subspace of $ 2 \pi $-
periodic polynomial splines of order $ r $
and defect 1 with respect to the partition $ k \pi /n $,
$ k = 0, \pm 1 \dots $
then a best linear method for the classes $ W _ \infty ^ {r + 1 } M $(
and $ W _ {1} ^ {r + 1 } $),
$ r = 1, 2 \dots $
is achieved in $ L _ {p} $,
$ 1 \leq p \leq \infty $(
resp. in $ L _ {1} $)
by splines in $ S _ {n} ^ {r} $
interpolating the function $ x (t) $
at the points $ k \pi /n + [1 + (-1) ^ {r} ] \pi /4n $.
References
[1] | N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian) |
[2] | N.P. Korneichuk, "Extremal problems in approximation theory" , Moscow (1976) (In Russian) |
[3] | V.M. Tikhomirov, "Some problems in approximation theory" , Moscow (1976) (In Russian) |
References
[a1] | H. Kiesewetter, "Vorlesungen über lineare Approximation" , Deutsch. Verlag Wissenschaft. (1973) |
[a2] | J.R. Rice, "The approximation of functions" , 1. Linear theory , Addison-Wesley (1964) |