Difference between revisions of "Bessel processes"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | b1104301.png | ||
+ | $#A+1 = 40 n = 0 | ||
+ | $#C+1 = 40 : ~/encyclopedia/old_files/data/B110/B.1100430 Bessel processes | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A family of continuous Markov processes (cf. [[Markov process|Markov process]]) $ ( R _ {t} , t \geq 0 ) $ | |
+ | taking values in $ \mathbf R _ {+} $, | ||
+ | parametrized by their dimension $ \delta $. | ||
− | ( | + | When $ \delta = d $ |
+ | is an integer, $ ( R _ {t} ,t \geq 0 ) $ | ||
+ | may be represented as the Euclidean norm of [[Brownian motion|Brownian motion]] in $ \mathbf R ^ {d} $. | ||
+ | Let $ Q _ {x} ^ {d} $ | ||
+ | be the law of the square, starting from $ x \geq 0 $, | ||
+ | of such a process $ ( R _ {t} ,t \geq 0 ) $, | ||
+ | considered as a [[Random variable|random variable]] taking values in $ \Omega = C ( \mathbf R _ {+} , \mathbf R _ {+} ) $. | ||
+ | This law is infinitely divisible (cf. [[#References|[a6]]] and [[Infinitely-divisible distribution|Infinitely-divisible distribution]]). Hence, there exists a unique family $ ( Q _ {x} ^ \delta ;x \geq 0, \delta \geq 0 ) $ | ||
+ | of laws on $ \Omega $ | ||
+ | such that | ||
− | + | $$ \tag{a1 } | |
+ | Q _ {x} ^ \delta * Q _ {x ^ \prime } ^ {\delta ^ \prime } = Q _ {x + x ^ \prime } ^ {\delta + \delta ^ \prime } \textrm{ for all } \delta, \delta ^ \prime ,x,x ^ \prime \geq 0 | ||
+ | $$ | ||
− | + | ( $ * $ | |
+ | indicates the convolution of probabilities on $ \Omega $), | ||
+ | which coincides with the family $ ( Q _ {x} ^ {d} ,x \geq 0 ) $, | ||
+ | for integer dimensions $ d $. | ||
− | + | The process of coordinates $ ( X _ {t} ,t \geq 0 ) $ | |
+ | on $ \Omega $, | ||
+ | under $ Q _ {x} ^ \delta $, | ||
+ | satisfies the equation | ||
− | + | $$ \tag{a2 } | |
+ | X _ {t} = x + 2 \int\limits _ { 0 } ^ { t } {\sqrt {X _ {s} } } {d \beta _ {s} } + \delta t, \quad t \geq 0, | ||
+ | $$ | ||
− | + | with $ ( \beta _ {s} ,s \geq 0 ) $ | |
+ | a one-dimensional Brownian motion. Equation (a2) admits a unique strong solution, with values in $ \mathbf R _ {+} $. | ||
+ | Call its square root a $ \delta $- | ||
+ | dimensional Bessel process. | ||
− | + | Bessel processes also appear naturally in the Lamperti representation of the process $ ( { \mathop{\rm exp} } ( B _ {t} + \nu t ) ,t \geq 0 ) $, | |
+ | where $ \nu \in \mathbf R $ | ||
+ | and $ ( B _ {t} ,t \geq 0 ) $ | ||
+ | denotes a one-dimensional Brownian motion. This representation is: | ||
− | + | $$ \tag{a3 } | |
+ | { \mathop{\rm exp} } ( B _ {t} + \nu t ) = R _ {\int\limits _ { 0 } ^ { t } { { \mathop{\rm exp} } ( 2 ( B _ {s} + \nu s ) ) } {ds } } , t \geq 0, | ||
+ | $$ | ||
− | Finally, the laws of the local times of | + | where $ R $ |
+ | is a $ \delta = 2 ( 1 + \nu ) $- | ||
+ | dimensional Bessel process. This representation (a3) has a number of consequences, among which absolute continuity properties of the laws $ Q _ {x} ^ \delta $ | ||
+ | as $ \delta $ | ||
+ | varies and $ x >0 $ | ||
+ | is fixed, and also the fact that a power of a Bessel process is another Bessel process, up to a time-change. | ||
+ | |||
+ | Special representations of Bessel processes of dimensions one and three, respectively, have been obtained by P. Lévy, as $ ( S _ {t} - B _ {t} ,t \geq 0 ) $, | ||
+ | and by J. Pitman as $ ( 2S _ {t} - B _ {t} ,t \geq 0 ) $, | ||
+ | where $ S _ {t} = \sup _ {s \leq t } B _ {s} $, | ||
+ | and $ ( B _ {t} ,t \geq 0 ) $ | ||
+ | is a one-dimensional Brownian motion. | ||
+ | |||
+ | Finally, the laws of the local times of $ ( B _ {t} ,t \geq 0 ) $ | ||
+ | considered up to first hitting times, or inverse local times, can be expressed in terms of $ Q _ {0} ^ {2} $ | ||
+ | and $ Q _ {x} ^ {0} $, | ||
+ | respectively: this is the content of the celebrated Ray–Knight theorems (1963; [[#References|[a1]]], [[#References|[a5]]]) on Brownian local times. These theorems have been extended to a large class of processes, including real-valued diffusions. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F.B. Knight, "Random walks and a sojourn density process of Brownian motion" ''Trans. Amer. Math. Soc.'' , '''107''' (1963) pp. 56–86</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.W. Pitman, "One-dimensional Brownian motion and the three-dimensional Bessel process" ''Adv. Applied Probab.'' , '''7''' (1975) pp. 511–526</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.W. Pitman, M. Yor, "Bessel processes and infinitely divisible laws" D. Williams (ed.) , ''Stochastic Integrals'' , ''Lecture Notes in Mathematics'' , '''851''' , Springer (1981)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J.W. Pitman, M. Yor, "A decomposition of Bessel bridges" ''Z. Wahrscheinlichkeitsth. verw. Gebiete'' , '''59''' (1982) pp. 425–457</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> D.B. Ray, "Sojourn times of a diffusion process" ''Ill. J. Math.'' , '''7''' (1963) pp. 615–630</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> T. Shiga, S. Watanabe, "Bessel diffusions as a one-parameter family of one-dimensional diffusion processes" ''Z. Wahrscheinlichkeitsth. verw. Gebiete'' , '''27''' (1973) pp. 37–46</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> D. Revuz, M. Yor, "Continuous martingales and Brownian motion" , Springer (1994) (Edition: Second)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F.B. Knight, "Random walks and a sojourn density process of Brownian motion" ''Trans. Amer. Math. Soc.'' , '''107''' (1963) pp. 56–86</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.W. Pitman, "One-dimensional Brownian motion and the three-dimensional Bessel process" ''Adv. Applied Probab.'' , '''7''' (1975) pp. 511–526</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.W. Pitman, M. Yor, "Bessel processes and infinitely divisible laws" D. Williams (ed.) , ''Stochastic Integrals'' , ''Lecture Notes in Mathematics'' , '''851''' , Springer (1981)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J.W. Pitman, M. Yor, "A decomposition of Bessel bridges" ''Z. Wahrscheinlichkeitsth. verw. Gebiete'' , '''59''' (1982) pp. 425–457</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> D.B. Ray, "Sojourn times of a diffusion process" ''Ill. J. Math.'' , '''7''' (1963) pp. 615–630</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> T. Shiga, S. Watanabe, "Bessel diffusions as a one-parameter family of one-dimensional diffusion processes" ''Z. Wahrscheinlichkeitsth. verw. Gebiete'' , '''27''' (1973) pp. 37–46</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> D. Revuz, M. Yor, "Continuous martingales and Brownian motion" , Springer (1994) (Edition: Second)</TD></TR></table> |
Latest revision as of 10:58, 29 May 2020
A family of continuous Markov processes (cf. Markov process) $ ( R _ {t} , t \geq 0 ) $
taking values in $ \mathbf R _ {+} $,
parametrized by their dimension $ \delta $.
When $ \delta = d $ is an integer, $ ( R _ {t} ,t \geq 0 ) $ may be represented as the Euclidean norm of Brownian motion in $ \mathbf R ^ {d} $. Let $ Q _ {x} ^ {d} $ be the law of the square, starting from $ x \geq 0 $, of such a process $ ( R _ {t} ,t \geq 0 ) $, considered as a random variable taking values in $ \Omega = C ( \mathbf R _ {+} , \mathbf R _ {+} ) $. This law is infinitely divisible (cf. [a6] and Infinitely-divisible distribution). Hence, there exists a unique family $ ( Q _ {x} ^ \delta ;x \geq 0, \delta \geq 0 ) $ of laws on $ \Omega $ such that
$$ \tag{a1 } Q _ {x} ^ \delta * Q _ {x ^ \prime } ^ {\delta ^ \prime } = Q _ {x + x ^ \prime } ^ {\delta + \delta ^ \prime } \textrm{ for all } \delta, \delta ^ \prime ,x,x ^ \prime \geq 0 $$
( $ * $ indicates the convolution of probabilities on $ \Omega $), which coincides with the family $ ( Q _ {x} ^ {d} ,x \geq 0 ) $, for integer dimensions $ d $.
The process of coordinates $ ( X _ {t} ,t \geq 0 ) $ on $ \Omega $, under $ Q _ {x} ^ \delta $, satisfies the equation
$$ \tag{a2 } X _ {t} = x + 2 \int\limits _ { 0 } ^ { t } {\sqrt {X _ {s} } } {d \beta _ {s} } + \delta t, \quad t \geq 0, $$
with $ ( \beta _ {s} ,s \geq 0 ) $ a one-dimensional Brownian motion. Equation (a2) admits a unique strong solution, with values in $ \mathbf R _ {+} $. Call its square root a $ \delta $- dimensional Bessel process.
Bessel processes also appear naturally in the Lamperti representation of the process $ ( { \mathop{\rm exp} } ( B _ {t} + \nu t ) ,t \geq 0 ) $, where $ \nu \in \mathbf R $ and $ ( B _ {t} ,t \geq 0 ) $ denotes a one-dimensional Brownian motion. This representation is:
$$ \tag{a3 } { \mathop{\rm exp} } ( B _ {t} + \nu t ) = R _ {\int\limits _ { 0 } ^ { t } { { \mathop{\rm exp} } ( 2 ( B _ {s} + \nu s ) ) } {ds } } , t \geq 0, $$
where $ R $ is a $ \delta = 2 ( 1 + \nu ) $- dimensional Bessel process. This representation (a3) has a number of consequences, among which absolute continuity properties of the laws $ Q _ {x} ^ \delta $ as $ \delta $ varies and $ x >0 $ is fixed, and also the fact that a power of a Bessel process is another Bessel process, up to a time-change.
Special representations of Bessel processes of dimensions one and three, respectively, have been obtained by P. Lévy, as $ ( S _ {t} - B _ {t} ,t \geq 0 ) $, and by J. Pitman as $ ( 2S _ {t} - B _ {t} ,t \geq 0 ) $, where $ S _ {t} = \sup _ {s \leq t } B _ {s} $, and $ ( B _ {t} ,t \geq 0 ) $ is a one-dimensional Brownian motion.
Finally, the laws of the local times of $ ( B _ {t} ,t \geq 0 ) $ considered up to first hitting times, or inverse local times, can be expressed in terms of $ Q _ {0} ^ {2} $ and $ Q _ {x} ^ {0} $, respectively: this is the content of the celebrated Ray–Knight theorems (1963; [a1], [a5]) on Brownian local times. These theorems have been extended to a large class of processes, including real-valued diffusions.
References
[a1] | F.B. Knight, "Random walks and a sojourn density process of Brownian motion" Trans. Amer. Math. Soc. , 107 (1963) pp. 56–86 |
[a2] | J.W. Pitman, "One-dimensional Brownian motion and the three-dimensional Bessel process" Adv. Applied Probab. , 7 (1975) pp. 511–526 |
[a3] | J.W. Pitman, M. Yor, "Bessel processes and infinitely divisible laws" D. Williams (ed.) , Stochastic Integrals , Lecture Notes in Mathematics , 851 , Springer (1981) |
[a4] | J.W. Pitman, M. Yor, "A decomposition of Bessel bridges" Z. Wahrscheinlichkeitsth. verw. Gebiete , 59 (1982) pp. 425–457 |
[a5] | D.B. Ray, "Sojourn times of a diffusion process" Ill. J. Math. , 7 (1963) pp. 615–630 |
[a6] | T. Shiga, S. Watanabe, "Bessel diffusions as a one-parameter family of one-dimensional diffusion processes" Z. Wahrscheinlichkeitsth. verw. Gebiete , 27 (1973) pp. 37–46 |
[a7] | D. Revuz, M. Yor, "Continuous martingales and Brownian motion" , Springer (1994) (Edition: Second) |
Bessel processes. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bessel_processes&oldid=17022