Difference between pages "Stability in game theory" and "Bers space"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | b1103801.png | ||
+ | $#A+1 = 124 n = 0 | ||
+ | $#C+1 = 124 : ~/encyclopedia/old_files/data/B110/B.1100380 Bers space | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A complex [[Banach space|Banach space]] of holomorphic automorphic forms introduced by L. Bers (1961). Let $ D $ | |
+ | be an open set of the Riemann sphere $ {\widehat{\mathbf C} } = \mathbf C \cup \{ \infty \} $ | ||
+ | whose boundary consists of more than two points. Then $ D $ | ||
+ | carries a unique complete conformal metric $ \lambda ( z ) | {dz } | $ | ||
+ | on $ D $ | ||
+ | with curvature $ - 4 $, | ||
+ | known as the hyperbolic metric on $ D $. | ||
+ | Let $ G $ | ||
+ | be a properly discontinuous group of conformal mappings of $ D $ | ||
+ | onto itself (cf. also [[Kleinian group|Kleinian group]]; [[Conformal mapping|Conformal mapping]]). Typical examples of $ G $ | ||
+ | are Kleinian groups (cf. also [[Kleinian group|Kleinian group]]), that is, a group of Möbius transformations (cf. also [[Fractional-linear mapping|Fractional-linear mapping]]) of $ {\widehat{\mathbf C} } $ | ||
+ | acting properly discontinuously on an open set of $ {\widehat{\mathbf C} } $. | ||
+ | By the conformal invariance, the hyperbolic area measure $ \lambda ( z ) ^ {2} dx dy $( | ||
+ | $ z = x + iy $) | ||
+ | on $ D $ | ||
+ | is projected to an area measure $ d \mu $ | ||
+ | on the orbit space $ D/G $. | ||
+ | In other words, let $ d \mu ( w ) = \lambda ( z ) ^ {2} dx dy $, | ||
+ | $ w = \pi ( z ) $, | ||
+ | where $ \pi : D \rightarrow {D/G } $ | ||
+ | is the natural projection. | ||
− | + | Fix an integer $ q \geq 2 $. | |
+ | A [[Holomorphic function|holomorphic function]] $ \varphi $ | ||
+ | on $ D $ | ||
+ | is called an automorphic form of weight $ - 2q $ | ||
+ | for $ G $ | ||
+ | if $ ( \varphi \circ g ) \cdot ( g ^ \prime ) ^ {q} = \varphi $ | ||
+ | for all $ g \in G $. | ||
+ | Then $ \lambda ^ {- q } | \varphi | $ | ||
+ | is invariant under the action of $ G $ | ||
+ | and hence may be considered as a function on $ D/G $. | ||
+ | The Bers space $ A _ {q} ^ {p} ( D,G ) $, | ||
+ | where $ 1 \leq p \leq \infty $, | ||
+ | is the complex Banach space of holomorphic automorphic forms $ \varphi $ | ||
+ | of weight $ - 2q $ | ||
+ | on $ D $ | ||
+ | for $ G $ | ||
+ | such that the function $ \lambda ^ {- q } | \varphi | $ | ||
+ | on $ D/G $ | ||
+ | belongs to the space $ L _ {p} $ | ||
+ | with respect to the measure $ \mu $. | ||
+ | The norm in $ A _ {q} ^ {p} ( D,G ) $ | ||
+ | is thus given by | ||
− | + | $$ | |
+ | \left \| \varphi \right \| = ( {\int\limits \int\limits } _ {D/G } {\lambda ^ {- pq } \left | \varphi \right | ^ {p} } {d \mu } ) ^ {1/p } | ||
+ | $$ | ||
− | + | if $ 1 \leq p < \infty $, | |
+ | and | ||
− | + | $$ | |
+ | \left \| \varphi \right \| = \sup _ {D/G } \lambda ^ {- q } \left | \varphi \right | | ||
+ | $$ | ||
− | + | if $ p = \infty $. | |
+ | Automorphic forms in $ A _ {q} ^ {p} ( D,G ) $ | ||
+ | are said to be $ p $- | ||
+ | integrable if $ 1 \leq p < \infty $, | ||
+ | and bounded if $ p = \infty $. | ||
+ | When $ G $ | ||
+ | is trivial, $ A _ {q} ^ {p} ( D,G ) $ | ||
+ | is abbreviated to $ A _ {q} ^ {p} ( D ) $. | ||
+ | Note that $ A _ {q} ^ \infty ( D,G ) $ | ||
+ | is isometrically embedded as a subspace of $ A _ {q} ^ \infty ( D ) $. | ||
− | + | ==Some properties of Bers spaces.== | |
− | + | 1) Let $ {1 / p } + {1 / {p ^ \prime } } = 1 $. | |
+ | The Petersson scalar product of $ \varphi \in A _ {q} ^ {p} ( D,G ) $ | ||
+ | and $ \psi \in A _ {q} ^ {p ^ \prime } ( D,G ) $ | ||
+ | is defined by | ||
− | + | $$ | |
+ | \left ( \varphi , \psi \right ) = {\int\limits \int\limits } _ {D/G } {\lambda ^ {- 2q } \varphi {\overline \psi \; } } {d \mu } . | ||
+ | $$ | ||
− | < | + | If $ 1 \leq p < \infty $, |
+ | then the Petersson scalar product establishes an anti-linear isomorphism of $ A _ {q} ^ {p ^ \prime } ( D,G ) $ | ||
+ | onto the dual space of $ A _ {q} ^ {p} ( D,G ) $, | ||
+ | whose operator norm is between $ ( q - 1 ) ( 2q - 1 ) ^ {- 1 } $ | ||
+ | and $ 1 $. | ||
− | + | 2) The Poincaré (theta-) series of a holomorphic function $ f $ | |
+ | on $ D $ | ||
+ | is defined by | ||
− | + | $$ | |
+ | \Theta f = \sum _ {g \in G } ( f \circ g ) \cdot ( g ^ \prime ) ^ {q} | ||
+ | $$ | ||
− | + | whenever the right-hand side converges absolutely and uniformly on compact subsets of $ D $( | |
+ | cf. [[Absolutely convergent series|Absolutely convergent series]]; [[Uniform convergence|Uniform convergence]]). Then $ \Theta f $ | ||
+ | is an automorphic form of weight $ - 2q $ | ||
+ | on $ D $ | ||
+ | for $ G $. | ||
+ | Moreover, $ \Theta $ | ||
+ | gives a continuous linear mapping of $ A _ {q} ^ {1} ( D ) $ | ||
+ | onto $ A _ {q} ^ {1} ( D,G ) $ | ||
+ | of norm at most $ 1 $. | ||
+ | For every $ \varphi \in A _ {q} ^ {p} ( D,G ) $ | ||
+ | there exists an $ f \in A _ {q} ^ {p} ( D ) $ | ||
+ | with $ \| f \| \leq ( 2q - 1 ) ( q - 1 ) ^ {- 1 } \| \varphi \| $ | ||
+ | such that $ \varphi = \Theta f $. | ||
+ | |||
+ | 3) Let $ B $ | ||
+ | be the set of branch points of the natural projection $ \pi $. | ||
+ | Assume that: i) $ D/G $ | ||
+ | is obtained from a (connected) closed [[Riemann surface|Riemann surface]] of genus $ g $ | ||
+ | by deleting precisely $ m $ | ||
+ | points; and ii) $ \pi ( B ) $ | ||
+ | consists of exactly $ n $ | ||
+ | points $ p _ {1} \dots p _ {n} $( | ||
+ | possibly, $ m = 0 $ | ||
+ | or $ n =0 $). | ||
+ | For each $ k = 1 \dots n $, | ||
+ | let $ \nu _ {k} $ | ||
+ | be the common multiplicity of $ \pi $ | ||
+ | at points of $ \pi ^ {- 1 } ( p _ {k} ) $. | ||
+ | Then $ A _ {q} ^ {p} ( D,G ) = A _ {q} ^ \infty ( D,G ) $ | ||
+ | for $ 1 \leq p \leq \infty $ | ||
+ | and | ||
+ | |||
+ | $$ | ||
+ | { \mathop{\rm dim} } A _ {q} ^ \infty ( D,G ) = | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | = | ||
+ | ( 2q - 1 ) ( g - 1 ) + ( q - 1 ) m + \sum _ {k =1 } ^ { n } \left [ q \left ( 1 - { | ||
+ | \frac{1}{\nu _ {k} } | ||
+ | } \right ) \right ] , | ||
+ | $$ | ||
+ | |||
+ | where $ [ x ] $ | ||
+ | denotes the largest integer that does not exceed $ x $. | ||
+ | |||
+ | 4) Consider the particular case where $ D $ | ||
+ | is the unit disc. Then $ G $ | ||
+ | is a [[Fuchsian group|Fuchsian group]] and $ \lambda ( z ) = ( 1 - | z | ^ {2} ) ^ {- 1 } $. | ||
+ | It had been conjectured that $ A _ {q} ^ {1} ( D,G ) \subset A _ {q} ^ \infty ( D,G ) $ | ||
+ | for any $ G $, | ||
+ | until Ch. Pommerenke [[#References|[a6]]] constructed a counterexample. In [[#References|[a5]]] D. Niebur and M. Sheingorn characterized the Fuchsian groups $ G $ | ||
+ | for which the inclusion relation holds. In particular, if $ G $ | ||
+ | is finitely generated, then $ A _ {q} ^ {1} ( D,G ) \subset A _ {q} ^ \infty ( D,G ) $. | ||
+ | |||
+ | 5) Let $ G $ | ||
+ | be a Fuchsian group acting on the unit disc $ D $. | ||
+ | It also preserves $ D ^ {*} = {\widehat{\mathbf C} } \setminus {\overline{D}\; } $, | ||
+ | the outside of the unit circle. If $ f $ | ||
+ | is conformal on $ D ^ {*} $ | ||
+ | and can be extended to a [[Quasi-conformal mapping|quasi-conformal mapping]] of $ {\widehat{\mathbf C} } $ | ||
+ | onto itself such that $ f \circ g \circ f ^ {- 1 } $ | ||
+ | is a Möbius transformation for each $ g \in G $, | ||
+ | then its [[Schwarzian derivative|Schwarzian derivative]] | ||
+ | |||
+ | $$ | ||
+ | Sf = { | ||
+ | \frac{f ^ {\prime \prime \prime } }{f ^ \prime } | ||
+ | } - { | ||
+ | \frac{3}{2} | ||
+ | } \left ( { | ||
+ | \frac{f ^ {\prime \prime } }{f ^ \prime } | ||
+ | } \right ) ^ {2} | ||
+ | $$ | ||
+ | |||
+ | belongs to $ A _ {2} ^ \infty ( D ^ {*} ,G ) $ | ||
+ | with $ \| {Sf } \| \leq 6 $. | ||
+ | Moreover, the set of all such Schwarzian derivatives constitutes a bounded domain in $ A _ {2} ^ \infty ( D ^ {*} ,G ) $ | ||
+ | including the open ball of radius $ 2 $ | ||
+ | centred at the origin. This domain can be regarded as a realization of the [[Teichmüller space|Teichmüller space]] $ T ( G ) $ | ||
+ | of $ G $, | ||
+ | and the injection of $ T ( G ) $ | ||
+ | into $ A _ {2} ^ \infty ( D ^ {*} ,G ) $ | ||
+ | induced by the Schwarzian derivative is referred to as the Bers embedding. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[ | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I. Kra, "Automorphic forms and Kleinian groups" , Benjamin (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Lehner, "Discontinuous groups and automorphic functions" , Amer. Math. Soc. (1964)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Lehner, "Automorphic forms" W.J. Harvey (ed.) , ''Discrete Groups and Automorphic Functions'' , Acad. Press (1977) pp. 73–120</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> S. Nag, "The complex analytic theory of Teichmüller spaces" , Wiley (1988)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> D. Niebur, M. Sheingorn, "Characterization of Fuchsian groups whose integrable forms are bounded" ''Ann. of Math.'' , '''106''' (1977) pp. 239–258</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> Ch. Pommerenke, "On inclusion relations for spaces of automorphic forms" W.E. Kirwan (ed.) L. Zalcman (ed.) , ''Advances in Complex Function Theory'' , ''Lecture Notes in Mathematics'' , '''505''' , Springer (1976) pp. 92–100</TD></TR></table> |
Latest revision as of 10:58, 29 May 2020
A complex Banach space of holomorphic automorphic forms introduced by L. Bers (1961). Let $ D $
be an open set of the Riemann sphere $ {\widehat{\mathbf C} } = \mathbf C \cup \{ \infty \} $
whose boundary consists of more than two points. Then $ D $
carries a unique complete conformal metric $ \lambda ( z ) | {dz } | $
on $ D $
with curvature $ - 4 $,
known as the hyperbolic metric on $ D $.
Let $ G $
be a properly discontinuous group of conformal mappings of $ D $
onto itself (cf. also Kleinian group; Conformal mapping). Typical examples of $ G $
are Kleinian groups (cf. also Kleinian group), that is, a group of Möbius transformations (cf. also Fractional-linear mapping) of $ {\widehat{\mathbf C} } $
acting properly discontinuously on an open set of $ {\widehat{\mathbf C} } $.
By the conformal invariance, the hyperbolic area measure $ \lambda ( z ) ^ {2} dx dy $(
$ z = x + iy $)
on $ D $
is projected to an area measure $ d \mu $
on the orbit space $ D/G $.
In other words, let $ d \mu ( w ) = \lambda ( z ) ^ {2} dx dy $,
$ w = \pi ( z ) $,
where $ \pi : D \rightarrow {D/G } $
is the natural projection.
Fix an integer $ q \geq 2 $. A holomorphic function $ \varphi $ on $ D $ is called an automorphic form of weight $ - 2q $ for $ G $ if $ ( \varphi \circ g ) \cdot ( g ^ \prime ) ^ {q} = \varphi $ for all $ g \in G $. Then $ \lambda ^ {- q } | \varphi | $ is invariant under the action of $ G $ and hence may be considered as a function on $ D/G $. The Bers space $ A _ {q} ^ {p} ( D,G ) $, where $ 1 \leq p \leq \infty $, is the complex Banach space of holomorphic automorphic forms $ \varphi $ of weight $ - 2q $ on $ D $ for $ G $ such that the function $ \lambda ^ {- q } | \varphi | $ on $ D/G $ belongs to the space $ L _ {p} $ with respect to the measure $ \mu $. The norm in $ A _ {q} ^ {p} ( D,G ) $ is thus given by
$$ \left \| \varphi \right \| = ( {\int\limits \int\limits } _ {D/G } {\lambda ^ {- pq } \left | \varphi \right | ^ {p} } {d \mu } ) ^ {1/p } $$
if $ 1 \leq p < \infty $, and
$$ \left \| \varphi \right \| = \sup _ {D/G } \lambda ^ {- q } \left | \varphi \right | $$
if $ p = \infty $. Automorphic forms in $ A _ {q} ^ {p} ( D,G ) $ are said to be $ p $- integrable if $ 1 \leq p < \infty $, and bounded if $ p = \infty $. When $ G $ is trivial, $ A _ {q} ^ {p} ( D,G ) $ is abbreviated to $ A _ {q} ^ {p} ( D ) $. Note that $ A _ {q} ^ \infty ( D,G ) $ is isometrically embedded as a subspace of $ A _ {q} ^ \infty ( D ) $.
Some properties of Bers spaces.
1) Let $ {1 / p } + {1 / {p ^ \prime } } = 1 $. The Petersson scalar product of $ \varphi \in A _ {q} ^ {p} ( D,G ) $ and $ \psi \in A _ {q} ^ {p ^ \prime } ( D,G ) $ is defined by
$$ \left ( \varphi , \psi \right ) = {\int\limits \int\limits } _ {D/G } {\lambda ^ {- 2q } \varphi {\overline \psi \; } } {d \mu } . $$
If $ 1 \leq p < \infty $, then the Petersson scalar product establishes an anti-linear isomorphism of $ A _ {q} ^ {p ^ \prime } ( D,G ) $ onto the dual space of $ A _ {q} ^ {p} ( D,G ) $, whose operator norm is between $ ( q - 1 ) ( 2q - 1 ) ^ {- 1 } $ and $ 1 $.
2) The Poincaré (theta-) series of a holomorphic function $ f $ on $ D $ is defined by
$$ \Theta f = \sum _ {g \in G } ( f \circ g ) \cdot ( g ^ \prime ) ^ {q} $$
whenever the right-hand side converges absolutely and uniformly on compact subsets of $ D $( cf. Absolutely convergent series; Uniform convergence). Then $ \Theta f $ is an automorphic form of weight $ - 2q $ on $ D $ for $ G $. Moreover, $ \Theta $ gives a continuous linear mapping of $ A _ {q} ^ {1} ( D ) $ onto $ A _ {q} ^ {1} ( D,G ) $ of norm at most $ 1 $. For every $ \varphi \in A _ {q} ^ {p} ( D,G ) $ there exists an $ f \in A _ {q} ^ {p} ( D ) $ with $ \| f \| \leq ( 2q - 1 ) ( q - 1 ) ^ {- 1 } \| \varphi \| $ such that $ \varphi = \Theta f $.
3) Let $ B $ be the set of branch points of the natural projection $ \pi $. Assume that: i) $ D/G $ is obtained from a (connected) closed Riemann surface of genus $ g $ by deleting precisely $ m $ points; and ii) $ \pi ( B ) $ consists of exactly $ n $ points $ p _ {1} \dots p _ {n} $( possibly, $ m = 0 $ or $ n =0 $). For each $ k = 1 \dots n $, let $ \nu _ {k} $ be the common multiplicity of $ \pi $ at points of $ \pi ^ {- 1 } ( p _ {k} ) $. Then $ A _ {q} ^ {p} ( D,G ) = A _ {q} ^ \infty ( D,G ) $ for $ 1 \leq p \leq \infty $ and
$$ { \mathop{\rm dim} } A _ {q} ^ \infty ( D,G ) = $$
$$ = ( 2q - 1 ) ( g - 1 ) + ( q - 1 ) m + \sum _ {k =1 } ^ { n } \left [ q \left ( 1 - { \frac{1}{\nu _ {k} } } \right ) \right ] , $$
where $ [ x ] $ denotes the largest integer that does not exceed $ x $.
4) Consider the particular case where $ D $ is the unit disc. Then $ G $ is a Fuchsian group and $ \lambda ( z ) = ( 1 - | z | ^ {2} ) ^ {- 1 } $. It had been conjectured that $ A _ {q} ^ {1} ( D,G ) \subset A _ {q} ^ \infty ( D,G ) $ for any $ G $, until Ch. Pommerenke [a6] constructed a counterexample. In [a5] D. Niebur and M. Sheingorn characterized the Fuchsian groups $ G $ for which the inclusion relation holds. In particular, if $ G $ is finitely generated, then $ A _ {q} ^ {1} ( D,G ) \subset A _ {q} ^ \infty ( D,G ) $.
5) Let $ G $ be a Fuchsian group acting on the unit disc $ D $. It also preserves $ D ^ {*} = {\widehat{\mathbf C} } \setminus {\overline{D}\; } $, the outside of the unit circle. If $ f $ is conformal on $ D ^ {*} $ and can be extended to a quasi-conformal mapping of $ {\widehat{\mathbf C} } $ onto itself such that $ f \circ g \circ f ^ {- 1 } $ is a Möbius transformation for each $ g \in G $, then its Schwarzian derivative
$$ Sf = { \frac{f ^ {\prime \prime \prime } }{f ^ \prime } } - { \frac{3}{2} } \left ( { \frac{f ^ {\prime \prime } }{f ^ \prime } } \right ) ^ {2} $$
belongs to $ A _ {2} ^ \infty ( D ^ {*} ,G ) $ with $ \| {Sf } \| \leq 6 $. Moreover, the set of all such Schwarzian derivatives constitutes a bounded domain in $ A _ {2} ^ \infty ( D ^ {*} ,G ) $ including the open ball of radius $ 2 $ centred at the origin. This domain can be regarded as a realization of the Teichmüller space $ T ( G ) $ of $ G $, and the injection of $ T ( G ) $ into $ A _ {2} ^ \infty ( D ^ {*} ,G ) $ induced by the Schwarzian derivative is referred to as the Bers embedding.
References
[a1] | I. Kra, "Automorphic forms and Kleinian groups" , Benjamin (1972) |
[a2] | J. Lehner, "Discontinuous groups and automorphic functions" , Amer. Math. Soc. (1964) |
[a3] | J. Lehner, "Automorphic forms" W.J. Harvey (ed.) , Discrete Groups and Automorphic Functions , Acad. Press (1977) pp. 73–120 |
[a4] | S. Nag, "The complex analytic theory of Teichmüller spaces" , Wiley (1988) |
[a5] | D. Niebur, M. Sheingorn, "Characterization of Fuchsian groups whose integrable forms are bounded" Ann. of Math. , 106 (1977) pp. 239–258 |
[a6] | Ch. Pommerenke, "On inclusion relations for spaces of automorphic forms" W.E. Kirwan (ed.) L. Zalcman (ed.) , Advances in Complex Function Theory , Lecture Notes in Mathematics , 505 , Springer (1976) pp. 92–100 |
Stability in game theory. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stability_in_game_theory&oldid=14883