Difference between revisions of "Arithmetic space"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | a0133802.png | ||
| + | $#A+1 = 19 n = 0 | ||
| + | $#C+1 = 19 : ~/encyclopedia/old_files/data/A013/A.0103380 Arithmetic space, | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | ''number space, coordinate space, real $ n $- | |
| + | space'' | ||
| − | + | A Cartesian power $ \mathbf R ^ {n} $ | |
| + | of the set of real numbers $ \mathbf R $ | ||
| + | having the structure of a linear topological space. The addition operation is here defined by the formula: | ||
| − | + | $$ | |
| + | ( x _ {1} \dots x _ {n} ) + ( x _ {1} ^ \prime \dots x _ {n} ^ \prime ) | ||
| + | = ( x _ {1} + x _ {1} ^ \prime \dots x _ {n} + x _ {n} ^ \prime ); | ||
| + | $$ | ||
| − | + | while multiplication by a number $ \lambda \in \mathbf R $ | |
| + | is defined by the formula | ||
| − | + | $$ | |
| + | \lambda ( x _ {1} \dots x _ {n} ) = \ | ||
| + | ( \lambda x _ {1} \dots \lambda x _ {n} ). | ||
| + | $$ | ||
| − | + | The topology in $ \mathbf R ^ {n} $ | |
| + | is the topology of the direct product of $ n $ | ||
| + | copies of $ \mathbf R $; | ||
| + | its base is formed by open $ n $- | ||
| + | dimensional parallelepipeda: | ||
| − | + | $$ | |
| + | I = \{ {( x _ {1} \dots x _ {n} ) \in \mathbf R ^ {n} } : { | ||
| + | a _ {i} < x _ {i} < b _ {i} , i = 1 \dots n } \} | ||
| + | , | ||
| + | $$ | ||
| − | + | where the numbers $ a _ {1} \dots a _ {n} $ | |
| + | and $ b _ {1} \dots b _ {n} $ | ||
| + | are given. | ||
| − | + | The real $ n $- | |
| + | space $ \mathbf R ^ {n} $ | ||
| + | is also a normed space with respect to the norm | ||
| − | + | $$ | |
| + | \| x \| = \sqrt {x _ {1} ^ {2} + \dots +x _ {n} ^ {2} } , | ||
| + | $$ | ||
| − | where | + | where $ x = ( x _ {1} \dots x _ {n} ) \in \mathbf R ^ {n} $, |
| + | and is a Euclidean space with respect to the scalar product | ||
| + | |||
| + | $$ | ||
| + | \langle x, y \rangle = \sum _ {i=1 } ^ { n } | ||
| + | x _ {i} y _ {i} , | ||
| + | $$ | ||
| + | |||
| + | where $ x = ( x _ {1} \dots x _ {n} ) , y = ( y _ {1} \dots y _ {n} ) \in \mathbf R ^ {n} $. | ||
Revision as of 18:48, 5 April 2020
number space, coordinate space, real $ n $-
space
A Cartesian power $ \mathbf R ^ {n} $ of the set of real numbers $ \mathbf R $ having the structure of a linear topological space. The addition operation is here defined by the formula:
$$ ( x _ {1} \dots x _ {n} ) + ( x _ {1} ^ \prime \dots x _ {n} ^ \prime ) = ( x _ {1} + x _ {1} ^ \prime \dots x _ {n} + x _ {n} ^ \prime ); $$
while multiplication by a number $ \lambda \in \mathbf R $ is defined by the formula
$$ \lambda ( x _ {1} \dots x _ {n} ) = \ ( \lambda x _ {1} \dots \lambda x _ {n} ). $$
The topology in $ \mathbf R ^ {n} $ is the topology of the direct product of $ n $ copies of $ \mathbf R $; its base is formed by open $ n $- dimensional parallelepipeda:
$$ I = \{ {( x _ {1} \dots x _ {n} ) \in \mathbf R ^ {n} } : { a _ {i} < x _ {i} < b _ {i} , i = 1 \dots n } \} , $$
where the numbers $ a _ {1} \dots a _ {n} $ and $ b _ {1} \dots b _ {n} $ are given.
The real $ n $- space $ \mathbf R ^ {n} $ is also a normed space with respect to the norm
$$ \| x \| = \sqrt {x _ {1} ^ {2} + \dots +x _ {n} ^ {2} } , $$
where $ x = ( x _ {1} \dots x _ {n} ) \in \mathbf R ^ {n} $, and is a Euclidean space with respect to the scalar product
$$ \langle x, y \rangle = \sum _ {i=1 } ^ { n } x _ {i} y _ {i} , $$
where $ x = ( x _ {1} \dots x _ {n} ) , y = ( y _ {1} \dots y _ {n} ) \in \mathbf R ^ {n} $.
Arithmetic space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Arithmetic_space&oldid=13139