Namespaces
Variants
Actions

Difference between revisions of "Approximation of a differential equation by difference equations"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
a0129301.png
 +
$#A+1 = 62 n = 0
 +
$#C+1 = 62 : ~/encyclopedia/old_files/data/A012/A.0102930 Approximation of a differential equation by difference equations
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
An approximation of a differential equation by a system of algebraic equations for the values of the unknown functions on some grid, which is made more exact by making the parameter (mesh, step) of the grid tend to zero.
 
An approximation of a differential equation by a system of algebraic equations for the values of the unknown functions on some grid, which is made more exact by making the parameter (mesh, step) of the grid tend to zero.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a0129301.png" />, be some differential operator and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a0129302.png" />, be some finite-difference operator (cf. [[Approximation of a differential operator by difference operators|Approximation of a differential operator by difference operators]]). One says that the finite-difference expression <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a0129303.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a0129304.png" />, is an approximation of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a0129305.png" /> to the differential equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a0129306.png" /> on solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a0129307.png" /> if the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a0129308.png" /> approximates the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a0129309.png" /> on solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293010.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293011.png" />, i.e. if
+
Let $  L, Lu = f $,  
 +
be some differential operator and let $  L _ {h} , L _ {h} u _ {h} = f _ {h} ,\  u _ {h} \in U _ {h} , f _ {h} \in F _ {h} $,  
 +
be some finite-difference operator (cf. [[Approximation of a differential operator by difference operators|Approximation of a differential operator by difference operators]]). One says that the finite-difference expression $  L _ {h} u _ {h} = 0 $,  
 +
0 \in F _ {h} $,  
 +
is an approximation of order $  p $
 +
to the differential equation $  Lu=0 $
 +
on solutions $  u $
 +
if the operator $  L _ {h} $
 +
approximates the operator $  L $
 +
on solutions $  u $
 +
of order $  p $,  
 +
i.e. if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293012.png" /></td> </tr></table>
+
$$
 +
\| L _ {h} [ u ] _ {h} \| _ {F _ {h}  }  = O ( h  ^ {p} ).
 +
$$
  
The simplest example of the construction of a finite-difference equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293013.png" /> which approximates the differential equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293014.png" /> on solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293015.png" />, consists in replacing each derivative in the expression <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293016.png" /> by its finite-difference analogue.
+
The simplest example of the construction of a finite-difference equation $  L _ {h} u _ {n} = 0 $
 +
which approximates the differential equation $  Lu = 0 $
 +
on solutions $  u $,  
 +
consists in replacing each derivative in the expression $  Lu $
 +
by its finite-difference analogue.
  
 
For instance, the equation
 
For instance, the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293017.png" /></td> </tr></table>
+
$$
 +
Lu  \equiv 
 +
\frac{d  ^ {2} u }{d x  ^ {2} }
 +
+ p (x)
 +
 
 +
\frac{du}{dx}
 +
+ q (x) u  = 0
 +
$$
  
 
is approximated with second-order accuracy by the finite-difference equation
 
is approximated with second-order accuracy by the finite-difference equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293018.png" /></td> </tr></table>
+
$$
 +
L _ {h} u _ {h}  \equiv 
 +
\frac{u _ {m+1} -2 u _ {m} + u _ {m-1} }{h}
 +
  ^ {2} +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293019.png" /></td> </tr></table>
+
$$
 +
+
 +
p ( x _ {m} )
 +
\frac{u _ {m+1} -u _ {m-1} }{2h}
 +
+ q ( x _ {m} ) u _ {m}  = 0,
 +
$$
  
where the grids <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293021.png" /> consist of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293023.png" /> is an integer, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293024.png" /> is the value of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293025.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293026.png" />. Again, the equation
+
where the grids $  D _ {hU} $
 +
and $  D _ {hF} $
 +
consist of points $  x _ {m} = mh $,  
 +
$  m $
 +
is an integer, and $  u _ {m} $
 +
is the value of the function $  u _ {h} $
 +
at $  x _ {m} $.  
 +
Again, the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293027.png" /></td> </tr></table>
+
$$
 +
Lu  \equiv 
 +
\frac{\partial  u }{\partial  t }
 +
-  
 +
\frac{\partial  ^ {2} u }{\partial  x  ^ {2} }
 +
  = 0,
 +
$$
  
 
is approximated by two different difference approximations on smooth solutions:
 
is approximated by two different difference approximations on smooth solutions:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293028.png" /></td> </tr></table>
+
$$
 +
L _ {h}  ^ {(1)} u _ {h}  \equiv \
 +
 
 +
\frac{u _ {n}  ^ {n+1} -u _ {m}  ^ {n} } \tau
 +
-
 +
 
 +
\frac{u _ {m+1}  ^ {n} -2 u _ {m}  ^ {n} +u _ {m-1}  ^ {n} }{h}
 +
  ^ {2}  = 0
 +
$$
  
 
(explicit scheme), and
 
(explicit scheme), and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293029.png" /></td> </tr></table>
+
$$
 +
L _ {h}  ^ {(2)} u _ {h}  \equiv \
 +
 
 +
\frac{u _ {m}  ^ {n+1} -u _ {m}  ^ {n} } \tau
 +
-
  
(implicit scheme), in which the grids <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293031.png" /> consist of the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293036.png" /> are integers, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293037.png" /> is the value of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293038.png" /> at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293039.png" /> of the grid. There exist finite-difference operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293040.png" /> which represent an approximation to the differential operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293041.png" /> especially well only on solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293042.png" /> of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293043.png" /> and less well on other functions. For instance, the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293044.png" />,
+
\frac{u _ {m+1}  ^ {n+1} -2u _ {m}  ^ {n+1} + u _ {m-1}  ^ {n+1} }{h}
 +
  ^ {2}  = 0
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293045.png" /></td> </tr></table>
+
(implicit scheme), in which the grids  $  D _ {hU} $
 +
and  $  D _ {hF} $
 +
consist of the points  $  (x _ {m} , t _ {n} ) = (mh, n \tau ) $,
 +
$  \tau = r h  ^ {2} $,
 +
$  r = \textrm{ const } $,
 +
$  m $
 +
and  $  n $
 +
are integers, and  $  u _ {m}  ^ {n} $
 +
is the value of the function  $  u _ {h} $
 +
at the point  $  ( x _ {m} , t _ {n} ) $
 +
of the grid. There exist finite-difference operators  $  L _ {h} $
 +
which represent an approximation to the differential operator  $  L $
 +
especially well only on solutions  $  u $
 +
of the equation  $  Lu = 0 $
 +
and less well on other functions. For instance, the operator  $  L _ {h} $,
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293046.png" />, is a first-order approximation (with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293047.png" />) of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293048.png" />,
+
$$
 +
L _ {h} u _ {n}  \equiv \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293049.png" /></td> </tr></table>
+
\frac{u _ {m+1} -u _ {m} }{h}
 +
- \phi
 +
\left ( x _ {m} +
 +
\frac{h}{2}
 +
,
 +
\frac{u _ {m} + \widetilde{u}  } over
 +
2 \right )  = \
 +
f _ {h} \left ( x _ {m} + {%h}{2}
 +
\right ) ,
 +
$$
  
on arbitrary smooth functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293050.png" /> and it is a second-order approximation on solutions of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293051.png" /> (it is assumed that the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293052.png" /> is sufficiently smooth). When finding numerical solutions of boundary value problems for the differential equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293053.png" /> with the aid of the finite-difference equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293054.png" />, it is the approximation property of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293055.png" /> when applied to solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293056.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293057.png" /> that is significant and not its approximation property when applied to arbitrary smooth functions. For a large class of differential equations and systems of equations there exist methods for constructing difference equations approximating them, which also meet various additional conditions: stability of the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293058.png" /> with respect to rounding-off errors such as are permitted in the calculations; the validity of certain integral relations for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293059.png" /> which hold for the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293060.png" /> of the differential equation; the permissibility of using arbitrary grids <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293061.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293062.png" /> (this is important in calculating the motion of a continuous medium); a limitation on the number of arithmetical operations required to compute the solutions; etc.
+
where  $  \widetilde{u}  = u _ {m} + h \phi (x _ {m} ) $,
 +
is a first-order approximation (with respect to  $  h $)
 +
of the operator  $  L $,
 +
 
 +
$$
 +
Lu  \equiv 
 +
\frac{du}{dx}
 +
- \phi ( x , u )  = \
 +
f ( x ) ,
 +
$$
 +
 
 +
on arbitrary smooth functions $  u(x) $
 +
and it is a second-order approximation on solutions of the equation $  Lu = 0 $(
 +
it is assumed that the function $  u $
 +
is sufficiently smooth). When finding numerical solutions of boundary value problems for the differential equation $  Lu = 0 $
 +
with the aid of the finite-difference equation $  L _ {h} u _ {h} = 0 $,  
 +
it is the approximation property of $  L _ {h} $
 +
when applied to solutions $  u $
 +
of $  Lu = 0 $
 +
that is significant and not its approximation property when applied to arbitrary smooth functions. For a large class of differential equations and systems of equations there exist methods for constructing difference equations approximating them, which also meet various additional conditions: stability of the solution $  u _ {h} $
 +
with respect to rounding-off errors such as are permitted in the calculations; the validity of certain integral relations for $  u _ {h} $
 +
which hold for the solution $  u $
 +
of the differential equation; the permissibility of using arbitrary grids $  D _ {hU }  $
 +
and $  D _ {hF }  $(
 +
this is important in calculating the motion of a continuous medium); a limitation on the number of arithmetical operations required to compute the solutions; etc.
  
 
The approximation of a differential equation by difference equations is an element of the [[Approximation of a differential boundary value problem by difference boundary value problems|approximation of a differential boundary value problem by difference boundary value problems]] in order to approximately calculate a solution of the former.
 
The approximation of a differential equation by difference equations is an element of the [[Approximation of a differential boundary value problem by difference boundary value problems|approximation of a differential boundary value problem by difference boundary value problems]] in order to approximately calculate a solution of the former.
Line 43: Line 163:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S.K. Godunov,  V.S. Ryaben'kii,  "The theory of difference schemes" , North-Holland  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.A. Samarskii,  "Theorie der Differenzverfahren" , Akad. Verlagsgesell. Geest u. Portig K.-D.  (1984)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S.K. Godunov,  et al.,  "Numerical solution of multi-dimensional problems of gas dynamics" , Moscow  (1976)  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.A. Samarskii,  Yu.P. Popov,  "Difference schemes of gas dynamics" , Moscow  (1975)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S.K. Godunov,  V.S. Ryaben'kii,  "The theory of difference schemes" , North-Holland  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.A. Samarskii,  "Theorie der Differenzverfahren" , Akad. Verlagsgesell. Geest u. Portig K.-D.  (1984)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S.K. Godunov,  et al.,  "Numerical solution of multi-dimensional problems of gas dynamics" , Moscow  (1976)  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.A. Samarskii,  Yu.P. Popov,  "Difference schemes of gas dynamics" , Moscow  (1975)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
For additional references, see the additional references to [[Approximation of a differential operator by difference operators|Approximation of a differential operator by difference operators]].
 
For additional references, see the additional references to [[Approximation of a differential operator by difference operators|Approximation of a differential operator by difference operators]].

Revision as of 18:47, 5 April 2020


An approximation of a differential equation by a system of algebraic equations for the values of the unknown functions on some grid, which is made more exact by making the parameter (mesh, step) of the grid tend to zero.

Let $ L, Lu = f $, be some differential operator and let $ L _ {h} , L _ {h} u _ {h} = f _ {h} ,\ u _ {h} \in U _ {h} , f _ {h} \in F _ {h} $, be some finite-difference operator (cf. Approximation of a differential operator by difference operators). One says that the finite-difference expression $ L _ {h} u _ {h} = 0 $, $ 0 \in F _ {h} $, is an approximation of order $ p $ to the differential equation $ Lu=0 $ on solutions $ u $ if the operator $ L _ {h} $ approximates the operator $ L $ on solutions $ u $ of order $ p $, i.e. if

$$ \| L _ {h} [ u ] _ {h} \| _ {F _ {h} } = O ( h ^ {p} ). $$

The simplest example of the construction of a finite-difference equation $ L _ {h} u _ {n} = 0 $ which approximates the differential equation $ Lu = 0 $ on solutions $ u $, consists in replacing each derivative in the expression $ Lu $ by its finite-difference analogue.

For instance, the equation

$$ Lu \equiv \frac{d ^ {2} u }{d x ^ {2} } + p (x) \frac{du}{dx} + q (x) u = 0 $$

is approximated with second-order accuracy by the finite-difference equation

$$ L _ {h} u _ {h} \equiv \frac{u _ {m+1} -2 u _ {m} + u _ {m-1} }{h} ^ {2} + $$

$$ + p ( x _ {m} ) \frac{u _ {m+1} -u _ {m-1} }{2h} + q ( x _ {m} ) u _ {m} = 0, $$

where the grids $ D _ {hU} $ and $ D _ {hF} $ consist of points $ x _ {m} = mh $, $ m $ is an integer, and $ u _ {m} $ is the value of the function $ u _ {h} $ at $ x _ {m} $. Again, the equation

$$ Lu \equiv \frac{\partial u }{\partial t } - \frac{\partial ^ {2} u }{\partial x ^ {2} } = 0, $$

is approximated by two different difference approximations on smooth solutions:

$$ L _ {h} ^ {(1)} u _ {h} \equiv \ \frac{u _ {n} ^ {n+1} -u _ {m} ^ {n} } \tau - \frac{u _ {m+1} ^ {n} -2 u _ {m} ^ {n} +u _ {m-1} ^ {n} }{h} ^ {2} = 0 $$

(explicit scheme), and

$$ L _ {h} ^ {(2)} u _ {h} \equiv \ \frac{u _ {m} ^ {n+1} -u _ {m} ^ {n} } \tau - \frac{u _ {m+1} ^ {n+1} -2u _ {m} ^ {n+1} + u _ {m-1} ^ {n+1} }{h} ^ {2} = 0 $$

(implicit scheme), in which the grids $ D _ {hU} $ and $ D _ {hF} $ consist of the points $ (x _ {m} , t _ {n} ) = (mh, n \tau ) $, $ \tau = r h ^ {2} $, $ r = \textrm{ const } $, $ m $ and $ n $ are integers, and $ u _ {m} ^ {n} $ is the value of the function $ u _ {h} $ at the point $ ( x _ {m} , t _ {n} ) $ of the grid. There exist finite-difference operators $ L _ {h} $ which represent an approximation to the differential operator $ L $ especially well only on solutions $ u $ of the equation $ Lu = 0 $ and less well on other functions. For instance, the operator $ L _ {h} $,

$$ L _ {h} u _ {n} \equiv \ \frac{u _ {m+1} -u _ {m} }{h} - \phi \left ( x _ {m} + \frac{h}{2} , \frac{u _ {m} + \widetilde{u} } over 2 \right ) = \ f _ {h} \left ( x _ {m} + {%h}{2} \right ) , $$

where $ \widetilde{u} = u _ {m} + h \phi (x _ {m} ) $, is a first-order approximation (with respect to $ h $) of the operator $ L $,

$$ Lu \equiv \frac{du}{dx} - \phi ( x , u ) = \ f ( x ) , $$

on arbitrary smooth functions $ u(x) $ and it is a second-order approximation on solutions of the equation $ Lu = 0 $( it is assumed that the function $ u $ is sufficiently smooth). When finding numerical solutions of boundary value problems for the differential equation $ Lu = 0 $ with the aid of the finite-difference equation $ L _ {h} u _ {h} = 0 $, it is the approximation property of $ L _ {h} $ when applied to solutions $ u $ of $ Lu = 0 $ that is significant and not its approximation property when applied to arbitrary smooth functions. For a large class of differential equations and systems of equations there exist methods for constructing difference equations approximating them, which also meet various additional conditions: stability of the solution $ u _ {h} $ with respect to rounding-off errors such as are permitted in the calculations; the validity of certain integral relations for $ u _ {h} $ which hold for the solution $ u $ of the differential equation; the permissibility of using arbitrary grids $ D _ {hU } $ and $ D _ {hF } $( this is important in calculating the motion of a continuous medium); a limitation on the number of arithmetical operations required to compute the solutions; etc.

The approximation of a differential equation by difference equations is an element of the approximation of a differential boundary value problem by difference boundary value problems in order to approximately calculate a solution of the former.

References

[1] S.K. Godunov, V.S. Ryaben'kii, "The theory of difference schemes" , North-Holland (1964) (Translated from Russian)
[2] A.A. Samarskii, "Theorie der Differenzverfahren" , Akad. Verlagsgesell. Geest u. Portig K.-D. (1984) (Translated from Russian)
[3] S.K. Godunov, et al., "Numerical solution of multi-dimensional problems of gas dynamics" , Moscow (1976) (In Russian)
[4] A.A. Samarskii, Yu.P. Popov, "Difference schemes of gas dynamics" , Moscow (1975) (In Russian)

Comments

For additional references, see the additional references to Approximation of a differential operator by difference operators.

How to Cite This Entry:
Approximation of a differential equation by difference equations. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Approximation_of_a_differential_equation_by_difference_equations&oldid=12012
This article was adapted from an original article by V.S. Ryaben'kii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article