Difference between revisions of "Analytic sheaf"
From Encyclopedia of Mathematics
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | a0124201.png | ||
+ | $#A+1 = 13 n = 0 | ||
+ | $#C+1 = 13 : ~/encyclopedia/old_files/data/A012/A.0102420 Analytic sheaf | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | A sheaf $ F $ | ||
+ | on an analytic space $ X $ | ||
+ | such that for any point $ x \in X $ | ||
+ | the set $ F _ {x} $ | ||
+ | is a [[Module|module]] over the ring $ {\mathcal O} _ {x} $ | ||
+ | of germs of holomorphic functions at the point $ x $, | ||
+ | and such that the mapping $ (f , \alpha ) \rightarrow f \alpha $, | ||
+ | defined on the set of pairs $ ( f, \alpha ) $ | ||
+ | where $ f \in {\mathcal O} _ {x} $, | ||
+ | $ \alpha \in F _ {x} $, | ||
+ | is a continuous mapping of $ {\mathcal O} \times F $ | ||
+ | into $ F $ | ||
+ | for $ x \in X $. | ||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Grauert, R. Remmert, "Theory of Stein spaces" , Springer (1979) (Translated from German)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Grauert, R. Remmert, "Coherent analytic sheaves" , Springer (1984) (Translated from German)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Grauert, R. Remmert, "Theory of Stein spaces" , Springer (1979) (Translated from German)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Grauert, R. Remmert, "Coherent analytic sheaves" , Springer (1984) (Translated from German)</TD></TR></table> |
Revision as of 18:47, 5 April 2020
A sheaf $ F $
on an analytic space $ X $
such that for any point $ x \in X $
the set $ F _ {x} $
is a module over the ring $ {\mathcal O} _ {x} $
of germs of holomorphic functions at the point $ x $,
and such that the mapping $ (f , \alpha ) \rightarrow f \alpha $,
defined on the set of pairs $ ( f, \alpha ) $
where $ f \in {\mathcal O} _ {x} $,
$ \alpha \in F _ {x} $,
is a continuous mapping of $ {\mathcal O} \times F $
into $ F $
for $ x \in X $.
Comments
References
[a1] | H. Grauert, R. Remmert, "Theory of Stein spaces" , Springer (1979) (Translated from German) |
[a2] | H. Grauert, R. Remmert, "Coherent analytic sheaves" , Springer (1984) (Translated from German) |
How to Cite This Entry:
Analytic sheaf. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Analytic_sheaf&oldid=18711
Analytic sheaf. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Analytic_sheaf&oldid=18711
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article