Difference between revisions of "Analytic mapping"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | a0123301.png | ||
+ | $#A+1 = 74 n = 0 | ||
+ | $#C+1 = 74 : ~/encyclopedia/old_files/data/A012/A.0102330 Analytic mapping, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''analytic morphism'' | ''analytic morphism'' | ||
− | A morphism of analytic spaces considered as ringed spaces (cf. [[Analytic space|Analytic space]]; [[Ringed space|Ringed space]]). An analytic mapping of a space ( | + | A morphism of analytic spaces considered as ringed spaces (cf. [[Analytic space|Analytic space]]; [[Ringed space|Ringed space]]). An analytic mapping of a space ( $ X , {\mathcal O} _ {X} $) |
+ | into a space ( $ X , {\mathcal O} _ {Y} $) | ||
+ | is a pair $ ( f _ {0} , f _ {1} ) $, | ||
+ | where | ||
− | + | $$ | |
+ | f _ {0} : X \rightarrow Y | ||
+ | $$ | ||
is a continuous mapping, while | is a continuous mapping, while | ||
− | + | $$ | |
+ | f _ {1} : f _ {0} ^ {-1} ( {\mathcal O} _ {Y} ) \rightarrow {\mathcal O} _ {X} $$ | ||
− | is a homomorphism of sheaves of rings on | + | is a homomorphism of sheaves of rings on $ X $. |
+ | If the spaces are complex, an analytic mapping is also called a holomorphic mapping. | ||
− | If | + | If $ ( X, {\mathcal O} _ {X} ) $ |
+ | and $ ( Y, {\mathcal O} _ {Y} ) $ | ||
+ | are reduced analytic spaces, the homomorphism $ f _ {1} $ | ||
+ | is completely determined by the mapping $ f _ {0} $ | ||
+ | and is the inverse mapping of the germs of functions corresponding to $ f _ {0} $. | ||
+ | Thus, in this case an analytic mapping is a mapping $ f: X \rightarrow Y $ | ||
+ | such that for any $ x \in X $ | ||
+ | and for any $ \phi \in {\mathcal O} _ {f(x) } $ | ||
+ | one has $ \phi \circ f \in {\mathcal O} _ {X} $. | ||
A fibre of an analytic mapping | A fibre of an analytic mapping | ||
− | + | $$ | |
+ | f = ( f _ {0} , f _ {1} ) : ( X , {\mathcal O} _ {X} ) \rightarrow \ | ||
+ | ( Y , {\mathcal O} _ {Y} ) | ||
+ | $$ | ||
− | at a point | + | at a point $ y \in Y $ |
+ | is the analytic subspace | ||
− | + | $$ | |
+ | f ^ {-1} ( y ) = ( f _ {0} ^ {-1} ( y ) ,\ | ||
+ | {\mathcal O} _ {X} / f _ {1} ( m _ {y} ) {\mathcal O} _ {X} \mid _ {f _ {0} ^ {-1} ( y ) } ) | ||
+ | $$ | ||
− | of the space | + | of the space $ (X, {\mathcal O} _ {X} ) $, |
+ | where $ m _ {y} \in {\mathcal O} _ {y} $ | ||
+ | is the sheaf of germs of functions that vanish at the point $ y $. | ||
+ | Putting | ||
− | + | $$ | |
+ | d ( x ) = \mathop{\rm dim} _ {x} f ^ {-1} ( f _ {0} ( x ) ) ,\ \ | ||
+ | x \in X , | ||
+ | $$ | ||
one obtains the inequality | one obtains the inequality | ||
− | + | $$ \tag{* } | |
+ | { \mathop{\rm dim} } _ {x} X \leq \mathop{\rm dim} _ {f _ {0} ( x ) } Y+d ( x ) . | ||
+ | $$ | ||
− | If | + | If $ X $ |
+ | and $ Y $ | ||
+ | are reduced complex spaces, then the set | ||
− | + | $$ | |
+ | X _ {l} = \{ {x \in X } : {d ( x ) \geq l } \} | ||
+ | $$ | ||
− | is analytic in | + | is analytic in $ X $ |
+ | for any $ l \geq 0 $. | ||
− | An analytic mapping | + | An analytic mapping $ f = ( f _ {0} , f _ {1} ) $ |
+ | is called flat at a point $ x \in X $ | ||
+ | if $ {\mathcal O} _ {X,x } $ | ||
+ | is a [[Flat module|flat module]] over the ring $ {\mathcal O} _ {Y, f _ {0} (x) } $. | ||
+ | In such a case (*) becomes an equality. An analytic mapping is called flat if it is flat at all points $ x \in X $. | ||
+ | A flat analytic mapping of complex spaces is open. Conversely, if $ f _ {0} $ | ||
+ | is open, $ Y $ | ||
+ | is smooth and all fibres are reduced, then $ f $ | ||
+ | is a flat analytic mapping. The set of points of a complex or a [[Rigid analytic space|rigid analytic space]] $ X $ | ||
+ | at which an analytic mapping $ f $ | ||
+ | is not flat is analytic in $ X $. | ||
+ | If $ X $ | ||
+ | and $ Y $ | ||
+ | are reduced complex spaces, while $ X $ | ||
+ | has a countable base, then $ Y $ | ||
+ | contains a dense everywhere-open set over which $ f $ | ||
+ | is a flat analytic mapping. If an analytic mapping | ||
− | + | $$ | |
+ | f : ( X , {\mathcal O} _ {X} ) \rightarrow ( Y , {\mathcal O} _ {Y} ) | ||
+ | $$ | ||
− | of complex spaces is flat, then the set of | + | of complex spaces is flat, then the set of $ y \in Y $ |
+ | at which the fibre $ f ^ {-1} (y) $ | ||
+ | is not reduced or normal is analytic in $ ( X, {\mathcal O} _ {X} ) $. | ||
− | Let | + | Let $ f: X \rightarrow Y $ |
+ | be an analytic mapping of reduced complex spaces. If $ \mathop{\rm dim} X < \infty $, | ||
+ | then there exists a stratification | ||
− | + | $$ | |
+ | \emptyset = X ( - 1 ) \subseteq X ( 0 ) | ||
+ | \subseteq \dots \subseteq X ( r _ {i} ) \subseteq \dots , | ||
+ | $$ | ||
− | where | + | where $ X (r) $ |
+ | are analytic sets and $ X(r) = X $ | ||
+ | for large $ r $, | ||
+ | with the following property: Any point $ x \in X(r) \setminus X (r - 1) $ | ||
+ | has a neighbourhood $ U $ | ||
+ | in $ X $ | ||
+ | such that $ f ( U \cap X(r)) $ | ||
+ | is a local analytic set in $ Y $, | ||
+ | all irreducible components of germs of which have dimension $ r $ | ||
+ | at $ f(x) $. | ||
+ | If $ f $ | ||
+ | is proper, then $ f (X) $ | ||
+ | is an analytic set in $ X $. | ||
+ | This is a particular case of the finiteness theorem for analytic mappings. | ||
− | Let | + | Let $ X $, |
+ | $ Y $ | ||
+ | be complex spaces and let $ X $ | ||
+ | be compact. Then it is possible to endow the set $ { \mathop{\rm Mor} } (X, Y) $ | ||
+ | of all analytic mappings $ f: X \rightarrow Y $ | ||
+ | with the structure of a complex space such that the mapping | ||
− | + | $$ | |
+ | \mathop{\rm Mor} ( X , Y ) \times X \rightarrow Y , | ||
+ | $$ | ||
− | which maps the pair | + | which maps the pair $ (f, x) $ |
+ | into $ f (x) $, | ||
+ | is analytic. In particular, the group of automorphisms of a compact complex space $ X $ | ||
+ | is a complex Lie group, acting analytically on $ X $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Remmert, "Projektionen analytischer Mengen" ''Math. Ann.'' , '''130''' (1956) pp. 410–441</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Remmert, "Holomorphe und meromorphe Abbildungen komplexer Räume" ''Math. Ann.'' , '''133''' (1957) pp. 328–370</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> K. Stein, , ''Colloquium for topology'' , Strasbourg (1954)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J. Frisch, "Points de plattitude d'une morphisme d'espaces analytiques complexes" ''Invent. Math.'' , '''4''' (1967) pp. 118–138</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> G. Fisher, "Complex analytic geometry" , Springer (1976)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Remmert, "Projektionen analytischer Mengen" ''Math. Ann.'' , '''130''' (1956) pp. 410–441</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Remmert, "Holomorphe und meromorphe Abbildungen komplexer Räume" ''Math. Ann.'' , '''133''' (1957) pp. 328–370</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> K. Stein, , ''Colloquium for topology'' , Strasbourg (1954)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J. Frisch, "Points de plattitude d'une morphisme d'espaces analytiques complexes" ''Invent. Math.'' , '''4''' (1967) pp. 118–138</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> G. Fisher, "Complex analytic geometry" , Springer (1976)</TD></TR></table> |
Latest revision as of 18:47, 5 April 2020
analytic morphism
A morphism of analytic spaces considered as ringed spaces (cf. Analytic space; Ringed space). An analytic mapping of a space ( $ X , {\mathcal O} _ {X} $) into a space ( $ X , {\mathcal O} _ {Y} $) is a pair $ ( f _ {0} , f _ {1} ) $, where
$$ f _ {0} : X \rightarrow Y $$
is a continuous mapping, while
$$ f _ {1} : f _ {0} ^ {-1} ( {\mathcal O} _ {Y} ) \rightarrow {\mathcal O} _ {X} $$
is a homomorphism of sheaves of rings on $ X $. If the spaces are complex, an analytic mapping is also called a holomorphic mapping.
If $ ( X, {\mathcal O} _ {X} ) $ and $ ( Y, {\mathcal O} _ {Y} ) $ are reduced analytic spaces, the homomorphism $ f _ {1} $ is completely determined by the mapping $ f _ {0} $ and is the inverse mapping of the germs of functions corresponding to $ f _ {0} $. Thus, in this case an analytic mapping is a mapping $ f: X \rightarrow Y $ such that for any $ x \in X $ and for any $ \phi \in {\mathcal O} _ {f(x) } $ one has $ \phi \circ f \in {\mathcal O} _ {X} $.
A fibre of an analytic mapping
$$ f = ( f _ {0} , f _ {1} ) : ( X , {\mathcal O} _ {X} ) \rightarrow \ ( Y , {\mathcal O} _ {Y} ) $$
at a point $ y \in Y $ is the analytic subspace
$$ f ^ {-1} ( y ) = ( f _ {0} ^ {-1} ( y ) ,\ {\mathcal O} _ {X} / f _ {1} ( m _ {y} ) {\mathcal O} _ {X} \mid _ {f _ {0} ^ {-1} ( y ) } ) $$
of the space $ (X, {\mathcal O} _ {X} ) $, where $ m _ {y} \in {\mathcal O} _ {y} $ is the sheaf of germs of functions that vanish at the point $ y $. Putting
$$ d ( x ) = \mathop{\rm dim} _ {x} f ^ {-1} ( f _ {0} ( x ) ) ,\ \ x \in X , $$
one obtains the inequality
$$ \tag{* } { \mathop{\rm dim} } _ {x} X \leq \mathop{\rm dim} _ {f _ {0} ( x ) } Y+d ( x ) . $$
If $ X $ and $ Y $ are reduced complex spaces, then the set
$$ X _ {l} = \{ {x \in X } : {d ( x ) \geq l } \} $$
is analytic in $ X $ for any $ l \geq 0 $.
An analytic mapping $ f = ( f _ {0} , f _ {1} ) $ is called flat at a point $ x \in X $ if $ {\mathcal O} _ {X,x } $ is a flat module over the ring $ {\mathcal O} _ {Y, f _ {0} (x) } $. In such a case (*) becomes an equality. An analytic mapping is called flat if it is flat at all points $ x \in X $. A flat analytic mapping of complex spaces is open. Conversely, if $ f _ {0} $ is open, $ Y $ is smooth and all fibres are reduced, then $ f $ is a flat analytic mapping. The set of points of a complex or a rigid analytic space $ X $ at which an analytic mapping $ f $ is not flat is analytic in $ X $. If $ X $ and $ Y $ are reduced complex spaces, while $ X $ has a countable base, then $ Y $ contains a dense everywhere-open set over which $ f $ is a flat analytic mapping. If an analytic mapping
$$ f : ( X , {\mathcal O} _ {X} ) \rightarrow ( Y , {\mathcal O} _ {Y} ) $$
of complex spaces is flat, then the set of $ y \in Y $ at which the fibre $ f ^ {-1} (y) $ is not reduced or normal is analytic in $ ( X, {\mathcal O} _ {X} ) $.
Let $ f: X \rightarrow Y $ be an analytic mapping of reduced complex spaces. If $ \mathop{\rm dim} X < \infty $, then there exists a stratification
$$ \emptyset = X ( - 1 ) \subseteq X ( 0 ) \subseteq \dots \subseteq X ( r _ {i} ) \subseteq \dots , $$
where $ X (r) $ are analytic sets and $ X(r) = X $ for large $ r $, with the following property: Any point $ x \in X(r) \setminus X (r - 1) $ has a neighbourhood $ U $ in $ X $ such that $ f ( U \cap X(r)) $ is a local analytic set in $ Y $, all irreducible components of germs of which have dimension $ r $ at $ f(x) $. If $ f $ is proper, then $ f (X) $ is an analytic set in $ X $. This is a particular case of the finiteness theorem for analytic mappings.
Let $ X $, $ Y $ be complex spaces and let $ X $ be compact. Then it is possible to endow the set $ { \mathop{\rm Mor} } (X, Y) $ of all analytic mappings $ f: X \rightarrow Y $ with the structure of a complex space such that the mapping
$$ \mathop{\rm Mor} ( X , Y ) \times X \rightarrow Y , $$
which maps the pair $ (f, x) $ into $ f (x) $, is analytic. In particular, the group of automorphisms of a compact complex space $ X $ is a complex Lie group, acting analytically on $ X $.
References
[1] | R. Remmert, "Projektionen analytischer Mengen" Math. Ann. , 130 (1956) pp. 410–441 |
[2] | R. Remmert, "Holomorphe und meromorphe Abbildungen komplexer Räume" Math. Ann. , 133 (1957) pp. 328–370 |
[3] | K. Stein, , Colloquium for topology , Strasbourg (1954) |
[4] | J. Frisch, "Points de plattitude d'une morphisme d'espaces analytiques complexes" Invent. Math. , 4 (1967) pp. 118–138 |
[5] | G. Fisher, "Complex analytic geometry" , Springer (1976) |
Analytic mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Analytic_mapping&oldid=12227