Namespaces
Variants
Actions

Difference between revisions of "Analytic function, element of an"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The collection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a0122501.png" /> of domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a0122502.png" /> in the plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a0122503.png" /> of a complex variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a0122504.png" /> and analytic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a0122505.png" /> given on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a0122506.png" /> by a certain analytic apparatus that allows one to effectively realize the analytic continuation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a0122507.png" /> to its whole domain of existence as a [[Complete analytic function|complete analytic function]]. The simplest and most frequently used form of an element of an analytic function is the circular element in the form of a power series
+
<!--
 +
a0122501.png
 +
$#A+1 = 42 n = 0
 +
$#C+1 = 42 : ~/encyclopedia/old_files/data/A012/A.0102250 Analytic function, element of an
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a0122508.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
and its disc of convergence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a0122509.png" /> with centre at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225010.png" /> (the centre of the element) and radius of convergence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225011.png" />. The analytic continuation here is achieved by a (possibly repeated) re-expansion of the series (1) for various centres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225013.png" />, by formulas like
+
The collection  $  ( D , f ) $
 +
of domains  $  D $
 +
in the plane  $  \mathbf C $
 +
of a complex variable  $  z $
 +
and analytic functions  $  f (z) $
 +
given on  $  D $
 +
by a certain analytic apparatus that allows one to effectively realize the analytic continuation of $  f (z) $
 +
to its whole domain of existence as a [[Complete analytic function|complete analytic function]]. The simplest and most frequently used form of an element of an analytic function is the circular element in the form of a power series
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225014.png" /></td> </tr></table>
+
$$ \tag{1 }
 +
f (z)  = \sum _ { k=0 } ^  \infty  c _ {k} ( z - a )  ^ {k}
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225015.png" /></td> </tr></table>
+
and its disc of convergence  $  D = \{ {z \in \mathbf C } : {| z - a | < R } \} $
 +
with centre at  $  a $(
 +
the centre of the element) and radius of convergence  $  R > 0 $.  
 +
The analytic continuation here is achieved by a (possibly repeated) re-expansion of the series (1) for various centres  $  b $,
 +
$  | b - a | \leq  R $,
 +
by formulas like
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225016.png" /></td> </tr></table>
+
$$
 +
f (z)  = \sum _ { n=0 } ^  \infty  d _ {n} ( z - b )  ^ {n}  = \
 +
c _ {0} +
 +
$$
  
Any one of the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225017.png" /> of a complete analytic function determines it uniquely and can be represented by means of circular elements with centres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225018.png" />. In the case of the centre at infinity, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225019.png" />, the circular element takes the form
+
$$
 +
+
 +
[c _ {1} ( b - a ) + c _ {1} ( z - b ) ] +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225020.png" /></td> </tr></table>
+
$$
 +
+
 +
[ c _ {2} ( b - a )  ^ {2} + 2 c _ {2} ( b - a
 +
) ( z - b ) + c _ {2} ( z - b )  ^ {2} ] + \dots .
 +
$$
  
with domain of convergence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225021.png" />.
+
Any one of the elements  $  ( D , f ) $
 +
of a complete analytic function determines it uniquely and can be represented by means of circular elements with centres  $  a \in D $.
 +
In the case of the centre at infinity,  $  a = \infty $,
 +
the circular element takes the form
  
In the process of the analytic continuation, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225022.png" /> may turn out to be multiple-valued and there may appear corresponding algebraic branch points (cf. [[Algebraic branch point|Algebraic branch point]]), that is, branched elements of the form
+
$$
 +
f (z)  = \sum _ { k=0 } ^  \infty  c _ {k} z  ^ {-k}
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225023.png" /></td> </tr></table>
+
with domain of convergence  $  D = \{ {z \in \mathbf C } : {| z | > R } \} $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225024.png" /></td> </tr></table>
+
In the process of the analytic continuation,  $  f (z) $
 +
may turn out to be multiple-valued and there may appear corresponding algebraic branch points (cf. [[Algebraic branch point|Algebraic branch point]]), that is, branched elements of the form
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225025.png" />; the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225026.png" /> is called the branching order. The branched elements generalize the concept of an element of an analytic function, which in this connection is also called an unramified (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225027.png" />) regular (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225028.png" />) element.
+
$$
 +
f (z)  = \sum _ { k=m } ^  \infty 
 +
c _ {k} ( z - a ) ^ {k / \nu } ,
 +
$$
  
As the simplest element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225029.png" /> of an analytic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225030.png" /> of several complex variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225032.png" />, one can take a multiple power series
+
$$
 +
f (z)  = \sum _ { k=m } ^  \infty  c _ {k} z ^ {- k / \nu } ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225033.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
where  $  \nu > 1 $;  
 +
the number  $  \nu - 1 $
 +
is called the branching order. The branched elements generalize the concept of an element of an analytic function, which in this connection is also called an unramified (for  $  \nu = 1 $)
 +
regular (for  $  m \geq  0 $)  
 +
element.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225034.png" /></td> </tr></table>
+
As the simplest element  $  ( D , f ) $
 +
of an analytic function  $  f (z) $
 +
of several complex variables  $  z = ( z _ {1} \dots z _ {n} ) $,
 +
$  n > 1 $,
 +
one can take a multiple power series
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225035.png" /> is the centre, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225037.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225038.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225039.png" /> is some polydisc
+
$$ \tag{2 }
 +
f (z)  = \sum _ {| k | = 0 } ^  \infty  c _ {k} ( z - a )  ^ {k\ } =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225040.png" /></td> </tr></table>
+
$$
 +
= \
 +
\sum _ {k _ {1} = 0 } ^  \infty  \dots \sum _ {
 +
k _ {n} = 0 } ^  \infty  c _ {k _ {1}  } \dots c _ {k _ {n}  } ( z _ {1} - a _ {1} ) ^ {k _ {1} } \dots ( z _ {n} - a _ {n} ) ^ {k _ {n} } ,
 +
$$
  
in which the series (2) converges absolutely. However, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225041.png" /> one has to bear in mind that a polydisc is not the exact domain of absolute convergence of a power series.
+
where  $  a = ( a _ {1} \dots a _ {n} ) $
 +
is the centre,  $  | k | = k _ {1} + \dots + k _ {n} $,
 +
$  c _ {k} = c _ {k _ {1}  } \dots c _ {k _ {n}  } $,
 +
$  ( z - a )  ^ {k} = ( z - a _ {1} ) ^ {k _ {1} } \dots ( z - a _ {n} ) ^ {k _ {n} } $,
 +
and  $  D $
 +
is some polydisc
 +
 
 +
$$
 +
D  =  \{ {z \in \mathbf C  ^ {n} } : {| z _ {j} - a _ {j} | < R _ {j} ,\
 +
j = 1 \dots n } \}
 +
$$
 +
 
 +
in which the series (2) converges absolutely. However, for $  n > 1 $
 +
one has to bear in mind that a polydisc is not the exact domain of absolute convergence of a power series.
  
 
The concept of an element of an analytic function is close to that of the [[Germ|germ]] of an analytic function.
 
The concept of an element of an analytic function is close to that of the [[Germ|germ]] of an analytic function.
Line 41: Line 111:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.I. Markushevich,  "Theory of functions of a complex variable" , '''1–2''' , Chelsea  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.S. Vladimirov,  "Methods of the theory of functions of several complex variables" , M.I.T.  (1966)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.I. Markushevich,  "Theory of functions of a complex variable" , '''1–2''' , Chelsea  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.S. Vladimirov,  "Methods of the theory of functions of several complex variables" , M.I.T.  (1966)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225042.png" /> the domain of absolute convergence of a power series is a so-called [[Reinhardt domain|Reinhardt domain]], cf. [[#References|[a1]]].
+
For $  n > 1 $
 +
the domain of absolute convergence of a power series is a so-called [[Reinhardt domain|Reinhardt domain]], cf. [[#References|[a1]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L. Hörmander,  "An introduction to complex analysis in several variables" , North-Holland  (1973)  pp. Chapt. 2.4</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L. Hörmander,  "An introduction to complex analysis in several variables" , North-Holland  (1973)  pp. Chapt. 2.4</TD></TR></table>

Latest revision as of 18:34, 5 April 2020


The collection $ ( D , f ) $ of domains $ D $ in the plane $ \mathbf C $ of a complex variable $ z $ and analytic functions $ f (z) $ given on $ D $ by a certain analytic apparatus that allows one to effectively realize the analytic continuation of $ f (z) $ to its whole domain of existence as a complete analytic function. The simplest and most frequently used form of an element of an analytic function is the circular element in the form of a power series

$$ \tag{1 } f (z) = \sum _ { k=0 } ^ \infty c _ {k} ( z - a ) ^ {k} $$

and its disc of convergence $ D = \{ {z \in \mathbf C } : {| z - a | < R } \} $ with centre at $ a $( the centre of the element) and radius of convergence $ R > 0 $. The analytic continuation here is achieved by a (possibly repeated) re-expansion of the series (1) for various centres $ b $, $ | b - a | \leq R $, by formulas like

$$ f (z) = \sum _ { n=0 } ^ \infty d _ {n} ( z - b ) ^ {n} = \ c _ {0} + $$

$$ + [c _ {1} ( b - a ) + c _ {1} ( z - b ) ] + $$

$$ + [ c _ {2} ( b - a ) ^ {2} + 2 c _ {2} ( b - a ) ( z - b ) + c _ {2} ( z - b ) ^ {2} ] + \dots . $$

Any one of the elements $ ( D , f ) $ of a complete analytic function determines it uniquely and can be represented by means of circular elements with centres $ a \in D $. In the case of the centre at infinity, $ a = \infty $, the circular element takes the form

$$ f (z) = \sum _ { k=0 } ^ \infty c _ {k} z ^ {-k} $$

with domain of convergence $ D = \{ {z \in \mathbf C } : {| z | > R } \} $.

In the process of the analytic continuation, $ f (z) $ may turn out to be multiple-valued and there may appear corresponding algebraic branch points (cf. Algebraic branch point), that is, branched elements of the form

$$ f (z) = \sum _ { k=m } ^ \infty c _ {k} ( z - a ) ^ {k / \nu } , $$

$$ f (z) = \sum _ { k=m } ^ \infty c _ {k} z ^ {- k / \nu } , $$

where $ \nu > 1 $; the number $ \nu - 1 $ is called the branching order. The branched elements generalize the concept of an element of an analytic function, which in this connection is also called an unramified (for $ \nu = 1 $) regular (for $ m \geq 0 $) element.

As the simplest element $ ( D , f ) $ of an analytic function $ f (z) $ of several complex variables $ z = ( z _ {1} \dots z _ {n} ) $, $ n > 1 $, one can take a multiple power series

$$ \tag{2 } f (z) = \sum _ {| k | = 0 } ^ \infty c _ {k} ( z - a ) ^ {k\ } = $$

$$ = \ \sum _ {k _ {1} = 0 } ^ \infty \dots \sum _ { k _ {n} = 0 } ^ \infty c _ {k _ {1} } \dots c _ {k _ {n} } ( z _ {1} - a _ {1} ) ^ {k _ {1} } \dots ( z _ {n} - a _ {n} ) ^ {k _ {n} } , $$

where $ a = ( a _ {1} \dots a _ {n} ) $ is the centre, $ | k | = k _ {1} + \dots + k _ {n} $, $ c _ {k} = c _ {k _ {1} } \dots c _ {k _ {n} } $, $ ( z - a ) ^ {k} = ( z - a _ {1} ) ^ {k _ {1} } \dots ( z - a _ {n} ) ^ {k _ {n} } $, and $ D $ is some polydisc

$$ D = \{ {z \in \mathbf C ^ {n} } : {| z _ {j} - a _ {j} | < R _ {j} ,\ j = 1 \dots n } \} $$

in which the series (2) converges absolutely. However, for $ n > 1 $ one has to bear in mind that a polydisc is not the exact domain of absolute convergence of a power series.

The concept of an element of an analytic function is close to that of the germ of an analytic function.

References

[1] A.I. Markushevich, "Theory of functions of a complex variable" , 1–2 , Chelsea (1977) (Translated from Russian)
[2] V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian)

Comments

For $ n > 1 $ the domain of absolute convergence of a power series is a so-called Reinhardt domain, cf. [a1].

References

[a1] L. Hörmander, "An introduction to complex analysis in several variables" , North-Holland (1973) pp. Chapt. 2.4
How to Cite This Entry:
Analytic function, element of an. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Analytic_function,_element_of_an&oldid=14787
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article