Namespaces
Variants
Actions

Difference between revisions of "Affine space"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (\vec --> \stackrel{\rightharpoonup})
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
''over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a0111001.png" />''
+
<!--
 +
a0111001.png
 +
$#A+1 = 79 n = 0
 +
$#C+1 = 79 : ~/encyclopedia/old_files/data/A011/A.0101100 Affine space
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a0111002.png" /> (the elements of which are called the points of the affine space) to which corresponds a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a0111003.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a0111004.png" /> (which is called the space associated to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a0111005.png" />) and a mapping of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a0111006.png" /> into the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a0111007.png" /> (the image of an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a0111008.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a0111009.png" /> and is called the vector with beginning in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110012.png" /> and end in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110013.png" />), which has the following properties:
+
{{TEX|auto}}
 +
{{TEX|done}}
  
a) for any fixed point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110014.png" /> the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110016.png" />, is a bijection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110017.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110018.png" />;
+
''over a field  $  k $''
  
b) for any points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110019.png" /> the relationship
+
A set  $  A $ (the elements of which are called the points of the affine space) to which corresponds a vector space  $  L $
 +
over  $  k $ (which is called the space associated to  $  A $)
 +
and a mapping of the set  $  A \times A $
 +
into the space  $  L $(
 +
the image of an element  $  (a, b) \in A \times A $
 +
is denoted by  $  \stackrel{\rightharpoonup}{ab} $
 +
and is called the vector with beginning in  $  a $
 +
and end in  $  b $),
 +
which has the following properties:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110020.png" /></td> </tr></table>
+
a) for any fixed point  $  a $
 +
the mapping  $  x \rightarrow \stackrel{\rightharpoonup}{ax} $,
 +
$  x \in A $,
 +
is a bijection of  $  A $
 +
on  $  L $;
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110021.png" /> denotes the zero vector, is valid. The dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110022.png" /> is taken for the dimension of the affine space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110023.png" />. A point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110024.png" /> and a vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110025.png" /> define another point, which is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110026.png" />, i.e. the additive group of vectors of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110027.png" /> acts freely and transitively on the affine space corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110028.png" />.
+
b) for any points  $  a, b, c \in A $
 +
the relationship
 +
 
 +
$$
 +
\stackrel{\rightharpoonup}{ab} + \stackrel{\rightharpoonup}{bc} + \stackrel{\rightharpoonup}{ca}  =  \stackrel{\rightharpoonup}{0} ,
 +
$$
 +
 
 +
where $  \stackrel{\rightharpoonup}{0} $
 +
denotes the zero vector, is valid. The dimension of $  L $
 +
is taken for the dimension of the affine space $  A $.  
 +
A point a \in A $
 +
and a vector $  l \in L $
 +
define another point, which is denoted by a + l $,  
 +
i.e. the additive group of vectors of the space $  L $
 +
acts freely and transitively on the affine space corresponding to $  L $.
  
 
===Examples.===
 
===Examples.===
  
 +
1) The set of the vectors of the space  $  L $
 +
is the affine space  $  A(L) $;
 +
the space associated to it coincides with  $  L $.
 +
In particular, the field of scalars is an affine space of dimension 1. If  $  L = k  ^ {n} $,
 +
then  $  A( k  ^ {n} ) $
 +
is called the  $  n $-
 +
dimensional affine space over the field  $  k $,
 +
and its points  $  a = ( a _ {1} \dots a _ {n} ) $
 +
and  $  b = (b _ {1} \dots b _ {n} ) $
 +
determine the vector  $  \stackrel{\rightharpoonup}{ab} = (b _ {1} - a _ {1} \dots b _ {n} - a _ {n} ) $.
  
1) The set of the vectors of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110029.png" /> is the affine space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110030.png" />; the space associated to it coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110031.png" />. In particular, the field of scalars is an affine space of dimension 1. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110032.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110033.png" /> is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110035.png" />-dimensional affine space over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110036.png" />, and its points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110038.png" /> determine the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110039.png" />.
+
2) The complement of any hyperplane in a projective space over the field $  k $
 
+
is an affine space.
2) The complement of any hyperplane in a projective space over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110040.png" /> is an affine space.
 
  
 
3) The set of solutions of a system of linear (algebraic or differential) equations is an affine space the associated space of which is the space of solutions of the corresponding homogeneous set of equations.
 
3) The set of solutions of a system of linear (algebraic or differential) equations is an affine space the associated space of which is the space of solutions of the corresponding homogeneous set of equations.
  
A subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110041.png" /> of an affine space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110042.png" /> is called an affine subspace (or a linear manifold) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110043.png" /> if the set of vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110045.png" />, forms a subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110046.png" />. Each affine subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110047.png" /> has the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110048.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110049.png" /> is some subspace in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110050.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110051.png" /> is an arbitrary element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110052.png" />.
+
A subset $  A  ^  \prime  $
 +
of an affine space $  A $
 +
is called an affine subspace (or a linear manifold) in $  A $
 +
if the set of vectors $  \stackrel{\rightharpoonup}{ab} $,
 +
a, b \in A  ^  \prime  $,  
 +
forms a subspace of $  L $.  
 +
Each affine subspace $  A  ^  \prime  \subset  A $
 +
has the form $  a + L  ^  \prime  = \{ {a + l } : {l \in L  ^  \prime  } \} $,  
 +
where $  L  ^  \prime  $
 +
is some subspace in $  L $,  
 +
while a $
 +
is an arbitrary element of $  A  ^  \prime  $.
  
A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110053.png" /> between affine spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110054.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110055.png" /> is called affine if there exists a linear mapping of the associated vector spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110056.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110057.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110058.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110059.png" />. A bijective affine mapping is called an affine isomorphism. All affine spaces of the same dimension are mutually isomorphic.
+
A mapping $  f: A _ {1} \rightarrow A _ {2} $
 +
between affine spaces $  A _ {1} $
 +
and $  A _ {2} $
 +
is called affine if there exists a linear mapping of the associated vector spaces $  \phi : L _ {1} \rightarrow L _ {2} $
 +
such that $  f(a + l) = f(a) + \phi (l) $
 +
for all a \in A _ {1} $,  
 +
$  l \in L _ {1} $.  
 +
A bijective affine mapping is called an affine isomorphism. All affine spaces of the same dimension are mutually isomorphic.
  
The affine isomorphisms of an affine space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110060.png" /> into itself form a group, called the affine group of the affine space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110061.png" /> and denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110062.png" />. The affine group of the affine space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110063.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110064.png" />. Each element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110065.png" /> is given by a formula
+
The affine isomorphisms of an affine space $  A $
 +
into itself form a group, called the affine group of the affine space $  A $
 +
and denoted by $  { \mathop{\rm Aff} } (A) $.  
 +
The affine group of the affine space $  A( k  ^ {n} ) $
 +
is denoted by $  { \mathop{\rm Aff} } _ {n} (k) $.  
 +
Each element $  f \in { \mathop{\rm Aff} } _ {n} (k) $
 +
is given by a formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110066.png" /></td> </tr></table>
+
$$
 +
f ( ( a _ {1} \dots a _ {n} ) )  = ( b _ {1} \dots b _ {n} ),
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110067.png" /></td> </tr></table>
+
$$
 +
b _ {i}  = \sum _ { j }
 +
a _ {i}  ^ {j} a _ {j} + c _ {i} ,
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110068.png" /> being an invertible matrix. The affine group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110069.png" /> contains an invariant subgroup, called the subgroup of (parallel) translations, consisting of the mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110070.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110071.png" /> is the identity. This group is isomorphic to the additive group of the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110072.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110073.png" /> defines a surjective homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110074.png" /> into the general linear group GL, with the subgroup of parallel translations as kernel. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110075.png" /> is a Euclidean space, the pre-image of the orthogonal group is called the subgroup of Euclidean motions. The pre-image of the special linear group SGL is called the equi-affine subgroup (cf. [[Affine unimodular group|Affine unimodular group]]). The subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110076.png" /> consisting of the mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110077.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110078.png" /> for a given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110079.png" /> and arbitrary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110080.png" /> is called the centro-affine subgroup; it is isomorphic to the general linear group GL of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110081.png" />.
+
$  ( a _ {i}  ^ {j} ) $
 +
being an invertible matrix. The affine group $  { \mathop{\rm Aff} } (A) $
 +
contains an invariant subgroup, called the subgroup of (parallel) translations, consisting of the mappings $  f: A\rightarrow A $
 +
for which $  \phi : L \rightarrow L $
 +
is the identity. This group is isomorphic to the additive group of the vector space $  L $.  
 +
The mapping $  f \rightarrow \phi $
 +
defines a surjective homomorphism of $  { \mathop{\rm Aff} } (A) $
 +
into the general linear group GL, with the subgroup of parallel translations as kernel. If $  L $
 +
is a Euclidean space, the pre-image of the orthogonal group is called the subgroup of Euclidean motions. The pre-image of the special linear group SGL is called the equi-affine subgroup (cf. [[Affine unimodular group|Affine unimodular group]]). The subgroup $  G _ {a} \subset  { \mathop{\rm Aff} } _ {n} (A) $
 +
consisting of the mappings $  f : A \rightarrow A $
 +
such that $  f(a+l) = a + \phi (l) $
 +
for a given a \in A $
 +
and arbitrary $  l \in L $
 +
is called the centro-affine subgroup; it is isomorphic to the general linear group GL of the space $  L $.
  
 
In algebraic geometry an [[Affine algebraic set|affine algebraic set]] is sometimes called an affine space. A finite-dimensional affine space can be provided with the structure of an [[Affine variety|affine variety]] with the Zariski topology (cf. also [[Affine scheme|Affine scheme]]).
 
In algebraic geometry an [[Affine algebraic set|affine algebraic set]] is sometimes called an affine space. A finite-dimensional affine space can be provided with the structure of an [[Affine variety|affine variety]] with the Zariski topology (cf. also [[Affine scheme|Affine scheme]]).
  
Affine spaces associated with a vector space over a skew-field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110082.png" /> are constructed in a similar manner.
+
Affine spaces associated with a vector space over a skew-field $  k $
 +
are constructed in a similar manner.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , '''1''' , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French) {{MR|0354207}} {{ZBL|}} </TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , '''1''' , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French) {{MR|0354207}} {{ZBL|}} </TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 20:40, 4 April 2020


over a field $ k $

A set $ A $ (the elements of which are called the points of the affine space) to which corresponds a vector space $ L $ over $ k $ (which is called the space associated to $ A $) and a mapping of the set $ A \times A $ into the space $ L $( the image of an element $ (a, b) \in A \times A $ is denoted by $ \stackrel{\rightharpoonup}{ab} $ and is called the vector with beginning in $ a $ and end in $ b $), which has the following properties:

a) for any fixed point $ a $ the mapping $ x \rightarrow \stackrel{\rightharpoonup}{ax} $, $ x \in A $, is a bijection of $ A $ on $ L $;

b) for any points $ a, b, c \in A $ the relationship

$$ \stackrel{\rightharpoonup}{ab} + \stackrel{\rightharpoonup}{bc} + \stackrel{\rightharpoonup}{ca} = \stackrel{\rightharpoonup}{0} , $$

where $ \stackrel{\rightharpoonup}{0} $ denotes the zero vector, is valid. The dimension of $ L $ is taken for the dimension of the affine space $ A $. A point $ a \in A $ and a vector $ l \in L $ define another point, which is denoted by $ a + l $, i.e. the additive group of vectors of the space $ L $ acts freely and transitively on the affine space corresponding to $ L $.

Examples.

1) The set of the vectors of the space $ L $ is the affine space $ A(L) $; the space associated to it coincides with $ L $. In particular, the field of scalars is an affine space of dimension 1. If $ L = k ^ {n} $, then $ A( k ^ {n} ) $ is called the $ n $- dimensional affine space over the field $ k $, and its points $ a = ( a _ {1} \dots a _ {n} ) $ and $ b = (b _ {1} \dots b _ {n} ) $ determine the vector $ \stackrel{\rightharpoonup}{ab} = (b _ {1} - a _ {1} \dots b _ {n} - a _ {n} ) $.

2) The complement of any hyperplane in a projective space over the field $ k $ is an affine space.

3) The set of solutions of a system of linear (algebraic or differential) equations is an affine space the associated space of which is the space of solutions of the corresponding homogeneous set of equations.

A subset $ A ^ \prime $ of an affine space $ A $ is called an affine subspace (or a linear manifold) in $ A $ if the set of vectors $ \stackrel{\rightharpoonup}{ab} $, $ a, b \in A ^ \prime $, forms a subspace of $ L $. Each affine subspace $ A ^ \prime \subset A $ has the form $ a + L ^ \prime = \{ {a + l } : {l \in L ^ \prime } \} $, where $ L ^ \prime $ is some subspace in $ L $, while $ a $ is an arbitrary element of $ A ^ \prime $.

A mapping $ f: A _ {1} \rightarrow A _ {2} $ between affine spaces $ A _ {1} $ and $ A _ {2} $ is called affine if there exists a linear mapping of the associated vector spaces $ \phi : L _ {1} \rightarrow L _ {2} $ such that $ f(a + l) = f(a) + \phi (l) $ for all $ a \in A _ {1} $, $ l \in L _ {1} $. A bijective affine mapping is called an affine isomorphism. All affine spaces of the same dimension are mutually isomorphic.

The affine isomorphisms of an affine space $ A $ into itself form a group, called the affine group of the affine space $ A $ and denoted by $ { \mathop{\rm Aff} } (A) $. The affine group of the affine space $ A( k ^ {n} ) $ is denoted by $ { \mathop{\rm Aff} } _ {n} (k) $. Each element $ f \in { \mathop{\rm Aff} } _ {n} (k) $ is given by a formula

$$ f ( ( a _ {1} \dots a _ {n} ) ) = ( b _ {1} \dots b _ {n} ), $$

where

$$ b _ {i} = \sum _ { j } a _ {i} ^ {j} a _ {j} + c _ {i} , $$

$ ( a _ {i} ^ {j} ) $ being an invertible matrix. The affine group $ { \mathop{\rm Aff} } (A) $ contains an invariant subgroup, called the subgroup of (parallel) translations, consisting of the mappings $ f: A\rightarrow A $ for which $ \phi : L \rightarrow L $ is the identity. This group is isomorphic to the additive group of the vector space $ L $. The mapping $ f \rightarrow \phi $ defines a surjective homomorphism of $ { \mathop{\rm Aff} } (A) $ into the general linear group GL, with the subgroup of parallel translations as kernel. If $ L $ is a Euclidean space, the pre-image of the orthogonal group is called the subgroup of Euclidean motions. The pre-image of the special linear group SGL is called the equi-affine subgroup (cf. Affine unimodular group). The subgroup $ G _ {a} \subset { \mathop{\rm Aff} } _ {n} (A) $ consisting of the mappings $ f : A \rightarrow A $ such that $ f(a+l) = a + \phi (l) $ for a given $ a \in A $ and arbitrary $ l \in L $ is called the centro-affine subgroup; it is isomorphic to the general linear group GL of the space $ L $.

In algebraic geometry an affine algebraic set is sometimes called an affine space. A finite-dimensional affine space can be provided with the structure of an affine variety with the Zariski topology (cf. also Affine scheme).

Affine spaces associated with a vector space over a skew-field $ k $ are constructed in a similar manner.

References

[1] N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , 1 , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French) MR0354207

Comments

An affine isomorphism is also called an affine collineation. An equi-affine group is also called a Euclidean group.

References

[a1] M. Berger, "Geometry" , I , Springer (1987) pp. Chapt. 2 MR0903026 MR0895392 MR0882916 MR0882541 Zbl 0619.53001 Zbl 0606.51001 Zbl 0606.00020
How to Cite This Entry:
Affine space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Affine_space&oldid=23742
This article was adapted from an original article by I.V. DolgachevA.P. Shirokov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article