|
|
Line 1: |
Line 1: |
− | ''Laplacian''
| + | <!-- |
| + | a0118901.png |
| + | $#A+1 = 40 n = 0 |
| + | $#C+1 = 40 : ~/encyclopedia/old_files/data/A011/A.0101890 Algorithms, combinations of |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | The differential operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l0575101.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l0575102.png" /> defined by the formula
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l0575103.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | The name of several methods for constructing new algorithms (cf. [[Algorithm|Algorithm]]) from given algorithms. |
| | | |
− | (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l0575104.png" /> are coordinates in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l0575105.png" />), as well as some generalizations of it. The Laplace operator (1) is the simplest elliptic differential operator of the second order. The Laplace operator plays an important role in mathematical analysis, mathematical physics and geometry (see, for example, [[Laplace equation|Laplace equation]]; [[Laplace–Beltrami equation|Laplace–Beltrami equation]]; [[Harmonic function|Harmonic function]]; [[Harmonic form|Harmonic form]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l0575106.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l0575107.png" />-dimensional [[Riemannian manifold|Riemannian manifold]] with metric | + | As applied to normal algorithms (cf. [[Normal algorithm|Normal algorithm]]), the following combinations (compositions) are best known: normal composition ( $ \mathfrak B \circ \mathfrak A $) |
| + | of two normal algorithms $ \mathfrak A $ |
| + | and $ \mathfrak B $, |
| + | normal union ( $ \mathfrak A \frw \mathfrak B $) |
| + | of two normal algorithms $ \mathfrak A $ |
| + | and $ \mathfrak B $, |
| + | normal branching ( $ \mathfrak A \mathbf Y \mathfrak B \mid \mathfrak C $) |
| + | of two normal algorithms $ \mathfrak A $ |
| + | and $ \mathfrak B $ |
| + | controlled by a normal algorithm $ \mathfrak C $, |
| + | and normal repetition $ \mathfrak A \aCc \mathfrak C $ |
| + | of a normal algorithm $ \mathfrak A $ |
| + | controlled by a normal algorithm $ \mathfrak C $. |
| + | If $ \mathfrak A , \mathfrak B $ |
| + | and $ \mathfrak C $ |
| + | are normal algorithms in some alphabet $ A $, |
| + | the above combinations are normal algorithms in a certain given extension of $ A $ |
| + | and satisfy the following conditions: a) for any word $ P $ |
| + | in $ A $, |
| + | $ ( \mathfrak B \circ \mathfrak A) \lfloor P \rfloor \simeq \mathfrak B \lfloor \mathfrak A \lfloor P \rfloor \rfloor $ |
| + | is true (the composition theorem); b) for any word $ P $ |
| + | in $ A $, |
| + | $ ( \mathfrak A \frw \mathfrak B ) \lfloor P \rfloor \simeq \mathfrak A \lfloor P \rfloor \mathfrak B \lfloor P \rfloor $ |
| + | is true (the union theorem); c) for any word $ P $ |
| + | in $ A $ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l0575108.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | $$ |
| + | ( \mathfrak A \mathbf Y \mathfrak B \mid \mathfrak C ) \lfloor P \rfloor \simeq \ |
| + | \left \{ \ |
| | | |
− | let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l0575109.png" /> be the matrix inverse to the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751010.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751011.png" />. Then the Laplace operator (or Laplace–Beltrami operator) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751012.png" /> with the Riemannian metric (2) has the form
| + | \begin{array}{ll} |
| + | \mathfrak A \lfloor P \rfloor & \textrm{ if } \mathfrak C \lfloor P \rfloor = F , \\ |
| + | \mathfrak B \lfloor P \rfloor & \textrm{ if } \mathfrak C \lfloor P \rfloor \neq F , \\ |
| + | \end{array} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751013.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
| + | \right .$$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751014.png" /> are local coordinates on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751015.png" />. (The operator (1) differs in sign from the Laplace operator on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751016.png" /> with the standard Euclidean metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751017.png" />.)
| + | moreover, if $ ( \mathfrak A \mathbf Y \mathfrak B \mid \mathfrak C ) \lfloor P \rfloor $ |
| + | has been defined, then $ \mathfrak C \lfloor P \rfloor $ |
| + | is defined as well (the branching theorem); d) for any words $ P $ |
| + | and $ Q $ |
| + | in $ A $, |
| + | the [[Graphic equality|graphic equality]] $ ( \mathfrak A \cse \mathfrak C ) \lfloor P \rfloor = Q $ |
| + | is true if and only if it is possible to indicate a sequence of words $ P _ {0} \dots P _ {k} $( |
| + | $ k \geq 1 $) |
| + | over the alphabet $ A $ |
| + | such that |
| | | |
− | A generalization of the operator (3) is the Laplace operator on differential forms (cf. also [[Differential form|Differential form]]). Namely, in the space of exterior differential forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751018.png" /> the Laplace operator has the form
| + | $$ |
| + | P _ {0} \cse P ,\ \ |
| + | P _ {k} \cse Q , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751019.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
| + | $$ |
| + | P _ {i} \cse \mathfrak A \lfloor P _ {i-1} \rfloor \ ( i = 1 \dots k ) , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751020.png" /> is the operator of exterior differentiation of a form and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751021.png" /> is the operator formally adjoint to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751022.png" />, defined by means of the following inner product on smooth forms with compact support:
| + | $$ |
| + | \mathfrak C \lfloor P _ {k} \rfloor \Ncs F \ ( i = 1 \dots k - 1 ) , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751023.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5)</td></tr></table>
| + | $$ |
| + | \mathfrak C \lfloor P _ {k} \rfloor \cse F |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751024.png" /> is the Hodge star operator induced by the metric (2) taking a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751025.png" />-form into an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751026.png" />-form. In (5) the forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751028.png" /> are assumed to be real; on complex forms one must use the Hermitian extension of the inner product (5). The restriction of the operator (4) to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751029.png" />-forms (that is, functions) is specified by (3). On <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751030.png" />-forms with an arbitrary integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751031.png" /> the Laplace operator in local coordinates can be written in the form
| + | (the repetition theorem). Similar theorems may also be obtained for Turing machines (cf. [[Turing machine|Turing machine]]). In the theory of recursive functions (cf. [[Recursive function|Recursive function]]), the combinations of these functions which are most frequently employed are those supplied by the substitution operator, the primitive [[Recursion|recursion]] operator and the $ \mu $- |
| + | operator. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751032.png" /></td> </tr></table>
| + | Theorems on combinations of algorithms reveal an important feature of the existing formalizations of the general concept of an algorithm — to wit, their "closure" under the natural ways of combination of algorithms. This fact is one of the principal arguments in favour of the basic assumption about algorithms (the [[Church thesis|Church thesis]]). Theorems on compositions of algorithms are an important part of the general theory of algorithms. Having been demonstrated once, they make it possible to determine the realizability of complicated and cumbersome algorithms, without actually writing down their schemes. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751033.png" /></td> </tr></table>
| + | Of major interest in the general theory of algorithms is the problem of synthesizing an arbitrary algorithm within some class of interest, using a pre-determined set of composition operators. |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751034.png" /></td> </tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751035.png" /></td> </tr></table>
| |
− | | |
− | Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751037.png" /> are the covariant derivatives with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751038.png" /> (cf. [[Covariant derivative|Covariant derivative]]), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751039.png" /> is the [[Curvature tensor|curvature tensor]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751040.png" /> is the [[Ricci tensor|Ricci tensor]].
| |
− | | |
− | Suppose one is given an arbitrary elliptic complex
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751041.png" /></td> <td valign="top" style="width:5%;text-align:right;">(6)</td></tr></table>
| |
− | | |
− | where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751042.png" /> are real or complex vector bundles on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751043.png" /> and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751044.png" /> are their spaces of smooth sections. Introducing a Hermitian metric in each vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751045.png" /> and also specifying the volume element on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751046.png" /> in an arbitrary way, one can define a Hermitian inner product in the space of smooth sections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751047.png" /> with compact support. Then operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751048.png" /> formally adjoint to the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751049.png" /> are defined. The Laplace operator (4) is then constructed on each space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751050.png" /> by formula (3). If for the complex (6) one takes the de Rham complex, then for a natural choice of the metric on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751051.png" />-forms and the volume element induced by the metric (2), one obtains for the Laplace operator of the de Rham complex the Laplace operator on forms, described above.
| |
− | | |
− | On a complex manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751052.png" />, together with the de Rham complex there are also the elliptic complexes
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751053.png" /></td> <td valign="top" style="width:5%;text-align:right;">(7)</td></tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751054.png" /></td> <td valign="top" style="width:5%;text-align:right;">(8)</td></tr></table>
| |
− | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751055.png" /> is the space of smooth forms of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751056.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751057.png" />. Introducing a Hermitian structure in the tangent bundle on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751058.png" />, one can construct the Laplace operator (4) of the de Rham complex and the Laplace operators of the complexes (7) and (8):
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751059.png" /></td> </tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751060.png" /></td> </tr></table>
| |
− | | |
− | Each of these operators takes the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751061.png" /> into itself. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751062.png" /> is a [[Kähler manifold|Kähler manifold]] and the Hermitian structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751063.png" /> is induced by the [[Kähler metric|Kähler metric]], then
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751064.png" /></td> </tr></table>
| |
− | | |
− | An important fact, which determines the role of the Laplace operator of an elliptic complex, is the existence in the case of a compact manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751065.png" /> of the orthogonal Weyl decomposition:
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751066.png" /></td> <td valign="top" style="width:5%;text-align:right;">(9)</td></tr></table>
| |
− | | |
− | In this decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751067.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751068.png" /> is the Laplace operator of the complex (6), so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751069.png" /> is the space of "harmonic" sections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751070.png" /> (in the case of the de Rham complex, this is the space of all harmonic forms of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751071.png" />). The direct sum of the first two terms on the right-hand side of (9) is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751072.png" />, and the direct sum of the last two terms coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751073.png" />. In particular, the decomposition (9) gives an isomorphism between the cohomology space of the complex (6) in the term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751074.png" /> and the space of harmonic sections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751075.png" />.
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. de Rham, "Differentiable manifolds" , Springer (1984) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.S. Chern, "Complex manifolds" , Univ. Recife (1959)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.A. Markov, "Theory of algorithms" , Israel Program Sci. Transl. (1961) (Translated from Russian) (Also: Trudy Mat. Inst. Steklov. 42 (1954))</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.C. Kleene, "Introduction to metamathematics" , North-Holland (1951)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.A. [V.A. Uspenskii] Ouspenski, "Leçons sur les fonctions calculables" , Hermann (1966) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.I. Mal'tsev, "Algorithms and recursive functions" , Wolters-Noordhoff (1970) (Translated from Russian)</TD></TR></table> |
− | | |
− | | |
| | | |
| ====Comments==== | | ====Comments==== |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751076.png" /> be a finite-dimensional vector space with an inner product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751077.png" /> and suppose an [[Orientation|orientation]] is given on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751078.png" />. Choose an orthonormal basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751079.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751080.png" /> in the given orientation class. The Hodge <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751082.png" />-operator (Hodge star operator, star operator)
| + | The standard terminology for the above composition operators is in the West: "sequential composition of algorithmssequential composition" , "non-deterministic choice of algorithmsnon-deterministic choice" , "if-then-else algorithmif-then-else" and the "while-loop algorithmwhile loop" , in order of appearance. A representative result of the type indicated is the characterization of the power of structured programming: Every flowchart can be expressed as a flowchart obtained by sequential composition, if-then-else and while, from simple assignment statements [[#References|[a1]]]. |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751083.png" /></td> </tr></table>
| |
− | | |
− | is defined by
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751084.png" /></td> </tr></table>
| |
− | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751085.png" /> and the plus (respectively, minus) sign is taken depending on whether the permutation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751086.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751087.png" /> is even or odd.
| |
− | | |
− | Declaring that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751088.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751089.png" />, form an orthonormal basis for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751090.png" /> defines an inner product on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751091.png" />, said to be induced from that of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751092.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751093.png" /> be the volume form determined by the chosen orientation. Then (extending <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751094.png" /> by linearity to all of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751095.png" />),
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751096.png" /></td> </tr></table>
| |
− | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751097.png" />.
| |
− | | |
− | The Hodge star operator on an oriented Riemannian manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751098.png" /> is defined pointwise:
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751099.png" /></td> </tr></table>
| |
− | | |
− | for a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510100.png" />-form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510101.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510102.png" />.
| |
− | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510103.png" /> be a complex vector space of (complex) dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510104.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510105.png" /> be the underlying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510106.png" />-dimensional real vector space. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510107.png" /> be a Hermitian inner product on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510108.png" />. Then the fundamental <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510110.png" />-form associated to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510111.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510112.png" />, provides an inner product on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510113.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510114.png" /> provides an orientation. In this case the Hodge <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510115.png" />-operator is defined relative to this inner product and this orientation. It is again extended pointwise to forms on complex manifolds with a Hermitian metric.
| |
− | | |
− | The Laplace operator of a Riemannian metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510116.png" /> can also be defined as the real symmetric second-order linear partial differential operator which annihilates the constant functions and for which the principal symbol (cf. [[Symbol of an operator|Symbol of an operator]]) is equal to the quadratic form on the cotangent bundle which is dual to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510117.png" />.
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W.V.D. Hodge, "The theory and application of harmonic integrals" , Cambridge Univ. Press (1952)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Böhm, G. Jacopini, "Flow diagrams, Turing machines and languages with only two formation rules" ''Comm. ACM'' , '''9''' (1966) pp. 366–371</TD></TR></table> |
The name of several methods for constructing new algorithms (cf. Algorithm) from given algorithms.
As applied to normal algorithms (cf. Normal algorithm), the following combinations (compositions) are best known: normal composition ( $ \mathfrak B \circ \mathfrak A $)
of two normal algorithms $ \mathfrak A $
and $ \mathfrak B $,
normal union ( $ \mathfrak A \frw \mathfrak B $)
of two normal algorithms $ \mathfrak A $
and $ \mathfrak B $,
normal branching ( $ \mathfrak A \mathbf Y \mathfrak B \mid \mathfrak C $)
of two normal algorithms $ \mathfrak A $
and $ \mathfrak B $
controlled by a normal algorithm $ \mathfrak C $,
and normal repetition $ \mathfrak A \aCc \mathfrak C $
of a normal algorithm $ \mathfrak A $
controlled by a normal algorithm $ \mathfrak C $.
If $ \mathfrak A , \mathfrak B $
and $ \mathfrak C $
are normal algorithms in some alphabet $ A $,
the above combinations are normal algorithms in a certain given extension of $ A $
and satisfy the following conditions: a) for any word $ P $
in $ A $,
$ ( \mathfrak B \circ \mathfrak A) \lfloor P \rfloor \simeq \mathfrak B \lfloor \mathfrak A \lfloor P \rfloor \rfloor $
is true (the composition theorem); b) for any word $ P $
in $ A $,
$ ( \mathfrak A \frw \mathfrak B ) \lfloor P \rfloor \simeq \mathfrak A \lfloor P \rfloor \mathfrak B \lfloor P \rfloor $
is true (the union theorem); c) for any word $ P $
in $ A $
$$
( \mathfrak A \mathbf Y \mathfrak B \mid \mathfrak C ) \lfloor P \rfloor \simeq \
\left \{ \
\begin{array}{ll}
\mathfrak A \lfloor P \rfloor & \textrm{ if } \mathfrak C \lfloor P \rfloor = F , \\
\mathfrak B \lfloor P \rfloor & \textrm{ if } \mathfrak C \lfloor P \rfloor \neq F , \\
\end{array}
\right .$$
moreover, if $ ( \mathfrak A \mathbf Y \mathfrak B \mid \mathfrak C ) \lfloor P \rfloor $
has been defined, then $ \mathfrak C \lfloor P \rfloor $
is defined as well (the branching theorem); d) for any words $ P $
and $ Q $
in $ A $,
the graphic equality $ ( \mathfrak A \cse \mathfrak C ) \lfloor P \rfloor = Q $
is true if and only if it is possible to indicate a sequence of words $ P _ {0} \dots P _ {k} $(
$ k \geq 1 $)
over the alphabet $ A $
such that
$$
P _ {0} \cse P ,\ \
P _ {k} \cse Q ,
$$
$$
P _ {i} \cse \mathfrak A \lfloor P _ {i-1} \rfloor \ ( i = 1 \dots k ) ,
$$
$$
\mathfrak C \lfloor P _ {k} \rfloor \Ncs F \ ( i = 1 \dots k - 1 ) ,
$$
$$
\mathfrak C \lfloor P _ {k} \rfloor \cse F
$$
(the repetition theorem). Similar theorems may also be obtained for Turing machines (cf. Turing machine). In the theory of recursive functions (cf. Recursive function), the combinations of these functions which are most frequently employed are those supplied by the substitution operator, the primitive recursion operator and the $ \mu $-
operator.
Theorems on combinations of algorithms reveal an important feature of the existing formalizations of the general concept of an algorithm — to wit, their "closure" under the natural ways of combination of algorithms. This fact is one of the principal arguments in favour of the basic assumption about algorithms (the Church thesis). Theorems on compositions of algorithms are an important part of the general theory of algorithms. Having been demonstrated once, they make it possible to determine the realizability of complicated and cumbersome algorithms, without actually writing down their schemes.
Of major interest in the general theory of algorithms is the problem of synthesizing an arbitrary algorithm within some class of interest, using a pre-determined set of composition operators.
References
[1] | A.A. Markov, "Theory of algorithms" , Israel Program Sci. Transl. (1961) (Translated from Russian) (Also: Trudy Mat. Inst. Steklov. 42 (1954)) |
[2] | S.C. Kleene, "Introduction to metamathematics" , North-Holland (1951) |
[3] | V.A. [V.A. Uspenskii] Ouspenski, "Leçons sur les fonctions calculables" , Hermann (1966) (Translated from Russian) |
[4] | A.I. Mal'tsev, "Algorithms and recursive functions" , Wolters-Noordhoff (1970) (Translated from Russian) |
The standard terminology for the above composition operators is in the West: "sequential composition of algorithmssequential composition" , "non-deterministic choice of algorithmsnon-deterministic choice" , "if-then-else algorithmif-then-else" and the "while-loop algorithmwhile loop" , in order of appearance. A representative result of the type indicated is the characterization of the power of structured programming: Every flowchart can be expressed as a flowchart obtained by sequential composition, if-then-else and while, from simple assignment statements [a1].
References
[a1] | C. Böhm, G. Jacopini, "Flow diagrams, Turing machines and languages with only two formation rules" Comm. ACM , 9 (1966) pp. 366–371 |