Difference between revisions of "Adjoint module"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | a0108601.png | ||
| + | $#A+1 = 38 n = 0 | ||
| + | $#C+1 = 38 : ~/encyclopedia/old_files/data/A010/A.0100860 Adjoint module, | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
''contragradient module, dual module'' | ''contragradient module, dual module'' | ||
| − | The module of homomorphisms of a given module into the ground ring. More precisely, let | + | The module of homomorphisms of a given module into the ground ring. More precisely, let $ M $ |
| + | be a left module over a ring $ R $. | ||
| + | The Abelian group $ \mathop{\rm Hom} _ {R} ( M , R ) $ | ||
| + | of homomorphisms of $ M $ | ||
| + | into $ R $ | ||
| + | regarded as a left $ R $- | ||
| + | module can be made into a right $ R $- | ||
| + | module $ M ^ {*} $ | ||
| + | by putting | ||
| − | + | $$ | |
| + | x ( \phi \lambda ) = \ | ||
| + | ( x \phi ) \lambda ,\ \ | ||
| + | x \in M ,\ \ | ||
| + | \phi \in \mathop{\rm Hom} _ {R} ( M , R ) ,\ \ | ||
| + | \lambda \in R . | ||
| + | $$ | ||
| − | This right module | + | This right module $ M ^ {*} $ |
| + | is called the adjoint of $ M $. | ||
| + | For $ x \in M $, | ||
| + | one can define an element $ \overline{x}\; \in M ^ {**} $ | ||
| + | by putting $ \overline{x}\; ( \phi ) = x( \phi ) $ | ||
| + | for all $ \phi \in M ^ {*} $. | ||
| + | This defines a homomorphism of $ M $ | ||
| + | into $ M ^ {** } $. | ||
| + | For any left $ R $- | ||
| + | module $ C $, | ||
| + | the mapping $ \zeta : M ^ {*} \otimes _ {R} C \rightarrow \mathop{\rm Hom} _ {R} ( M , C ) $ | ||
| + | given by | ||
| − | + | $$ | |
| + | x ( ( \phi \otimes c ) \zeta ) = \ | ||
| + | ( x \phi ) c ,\ \ | ||
| + | x \in M ,\ \ | ||
| + | \phi \in M ^ {*} ,\ \ | ||
| + | c \in C , | ||
| + | $$ | ||
| − | is also a homomorphism. Both of these are isomorphisms when | + | is also a homomorphism. Both of these are isomorphisms when $ M $ |
| + | is a finitely-generated projective module [[#References|[2]]]. It follows from the properties of the functor $ \mathop{\rm Hom} $ | ||
| + | that $ ( \sum M _ \alpha ) ^ {*} \simeq \prod M _ \alpha $( | ||
| + | where $ \sum $ | ||
| + | is the direct sum, and $ \prod $ | ||
| + | the direct product) and that there is a homomorphism of $ M ^ {***} $ | ||
| + | into $ M ^ {*} $. | ||
| + | The composite mapping $ M ^ {*} \rightarrow M ^ {***} \rightarrow M ^ {*} $ | ||
| + | is the identity, but $ M ^ {***} $ | ||
| + | need not be isomorphic to $ M ^ {*} $. | ||
| + | The torsion-free modules in the sense of Bass are those for which the above homomorphism of $ M $ | ||
| + | into $ M ^ {**} $ | ||
| + | turns out to be a monomorphism. This property is equivalent to the imbeddability of $ M $ | ||
| + | in a direct product of copies of the ground ring. If $ R $ | ||
| + | is right and left Noetherian, then the mapping $ M \mapsto M ^ {*} $ | ||
| + | defines a duality between the categories of finitely-generated left and right $ R $- | ||
| + | modules if and only if $ R $ | ||
| + | is a [[Quasi-Frobenius ring|Quasi-Frobenius ring]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , '''2''' , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.P. Mishina, L.A. Skornyakov, "Abelian groups and modules" , Amer. Math. Soc. (1976) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , '''2''' , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.P. Mishina, L.A. Skornyakov, "Abelian groups and modules" , Amer. Math. Soc. (1976) (Translated from Russian)</TD></TR></table> | ||
Latest revision as of 16:09, 1 April 2020
contragradient module, dual module
The module of homomorphisms of a given module into the ground ring. More precisely, let $ M $ be a left module over a ring $ R $. The Abelian group $ \mathop{\rm Hom} _ {R} ( M , R ) $ of homomorphisms of $ M $ into $ R $ regarded as a left $ R $- module can be made into a right $ R $- module $ M ^ {*} $ by putting
$$ x ( \phi \lambda ) = \ ( x \phi ) \lambda ,\ \ x \in M ,\ \ \phi \in \mathop{\rm Hom} _ {R} ( M , R ) ,\ \ \lambda \in R . $$
This right module $ M ^ {*} $ is called the adjoint of $ M $. For $ x \in M $, one can define an element $ \overline{x}\; \in M ^ {**} $ by putting $ \overline{x}\; ( \phi ) = x( \phi ) $ for all $ \phi \in M ^ {*} $. This defines a homomorphism of $ M $ into $ M ^ {** } $. For any left $ R $- module $ C $, the mapping $ \zeta : M ^ {*} \otimes _ {R} C \rightarrow \mathop{\rm Hom} _ {R} ( M , C ) $ given by
$$ x ( ( \phi \otimes c ) \zeta ) = \ ( x \phi ) c ,\ \ x \in M ,\ \ \phi \in M ^ {*} ,\ \ c \in C , $$
is also a homomorphism. Both of these are isomorphisms when $ M $ is a finitely-generated projective module [2]. It follows from the properties of the functor $ \mathop{\rm Hom} $ that $ ( \sum M _ \alpha ) ^ {*} \simeq \prod M _ \alpha $( where $ \sum $ is the direct sum, and $ \prod $ the direct product) and that there is a homomorphism of $ M ^ {***} $ into $ M ^ {*} $. The composite mapping $ M ^ {*} \rightarrow M ^ {***} \rightarrow M ^ {*} $ is the identity, but $ M ^ {***} $ need not be isomorphic to $ M ^ {*} $. The torsion-free modules in the sense of Bass are those for which the above homomorphism of $ M $ into $ M ^ {**} $ turns out to be a monomorphism. This property is equivalent to the imbeddability of $ M $ in a direct product of copies of the ground ring. If $ R $ is right and left Noetherian, then the mapping $ M \mapsto M ^ {*} $ defines a duality between the categories of finitely-generated left and right $ R $- modules if and only if $ R $ is a Quasi-Frobenius ring.
References
| [1] | N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , 2 , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French) |
| [2] | S. MacLane, "Homology" , Springer (1963) |
| [3] | A.P. Mishina, L.A. Skornyakov, "Abelian groups and modules" , Amer. Math. Soc. (1976) (Translated from Russian) |
Adjoint module. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Adjoint_module&oldid=18075