|
|
Line 1: |
Line 1: |
− | A [[Linear topology|linear topology]] of a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a0107901.png" /> in which the fundamental system of neighbourhoods of zero consists of the powers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a0107902.png" /> of some two-sided ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a0107903.png" />. The topology is then said to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a0107904.png" />-adic, and the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a0107905.png" /> is said to be the defining ideal of the topology. The closure of any set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a0107906.png" /> in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a0107907.png" />-adic topology is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a0107908.png" />; in particular, the topology is separable if, and only if, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a0107909.png" />. The separable completion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079010.png" /> of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079011.png" /> in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079012.png" />-adic topology is isomorphic to the projective limit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079013.png" />.
| + | <!-- |
| + | a0107901.png |
| + | $#A+1 = 56 n = 0 |
| + | $#C+1 = 56 : ~/encyclopedia/old_files/data/A010/A.0100790 Adic topology |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079014.png" />-adic topology of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079015.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079016.png" /> is defined in a similar manner: its fundamental system of neighbourhoods of zero is given by the submodules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079017.png" />; in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079018.png" />-adic topology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079019.png" /> becomes a topological <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079020.png" />-module.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079021.png" /> be a commutative ring with identity with an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079022.png" />-adic topology and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079023.png" /> be its completion; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079024.png" /> is an ideal of finite type, the topology in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079025.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079026.png" />-adic, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079027.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079028.png" /> is a maximal ideal, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079029.png" /> is a local ring with maximal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079030.png" />. A local ring topology is an adic topology defined by its maximal ideal (an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079032.png" />-adic topology).
| + | A [[Linear topology|linear topology]] of a ring $ A $ |
| + | in which the fundamental system of neighbourhoods of zero consists of the powers $ \mathfrak A ^ {n} $ |
| + | of some two-sided ideal $ \mathfrak A $. |
| + | The topology is then said to be $ \mathfrak A $- |
| + | adic, and the ideal $ \mathfrak A $ |
| + | is said to be the defining ideal of the topology. The closure of any set $ F \subset A $ |
| + | in the $ \mathfrak A $- |
| + | adic topology is equal to $ \cap _ {n \geq 0 } ( F + \mathfrak A ^ {n} ) $; |
| + | in particular, the topology is separable if, and only if, $ \cap _ {n \geq 0 } \mathfrak A ^ {n} = (0) $. |
| + | The separable completion $ \widehat{A} $ |
| + | of the ring $ A $ |
| + | in an $ \mathfrak A $- |
| + | adic topology is isomorphic to the projective limit $ \lim\limits _ \leftarrow ( A / \mathfrak A ^ {n} ) $. |
| | | |
− | A fundamental tool in the study of adic topologies of rings is the Artin–Rees lemma: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079033.png" /> be a commutative Noetherian ring, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079034.png" /> be an ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079035.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079036.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079037.png" />-module of finite type, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079038.png" /> be a submodule of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079039.png" />. Then there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079040.png" /> such that, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079041.png" />, the following equality is valid: | + | The $ \mathfrak A $- |
| + | adic topology of an $ A $- |
| + | module $ M $ |
| + | is defined in a similar manner: its fundamental system of neighbourhoods of zero is given by the submodules $ \mathfrak A ^ {n} M $; |
| + | in the $ \mathfrak A $- |
| + | adic topology $ M $ |
| + | becomes a topological $ A $- |
| + | module. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079042.png" /></td> </tr></table>
| + | Let $ A $ |
| + | be a commutative ring with identity with an $ \mathfrak A $- |
| + | adic topology and let $ \widehat{A} $ |
| + | be its completion; if $ \mathfrak A $ |
| + | is an ideal of finite type, the topology in $ \widehat{A} $ |
| + | is $ \widehat{\mathfrak A} $- |
| + | adic, and $ {\widehat{\mathfrak A} } {} ^ {n} = \mathfrak A ^ {n} \widehat{A} $. |
| + | If $ \mathfrak A $ |
| + | is a maximal ideal, then $ \widehat{A} $ |
| + | is a local ring with maximal ideal $ \widehat{\mathfrak A} $. |
| + | A local ring topology is an adic topology defined by its maximal ideal (an $ \mathfrak m $- |
| + | adic topology). |
| | | |
− | The topological interpretation of the Artin–Rees lemma shows that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079043.png" />-adic topology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079044.png" /> is induced by the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079045.png" />-adic topology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079046.png" />. It follows that the completion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079047.png" /> of a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079048.png" /> in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079049.png" />-adic topology is a flat <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079050.png" />-module (cf. [[Flat module|Flat module]]), that the completion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079051.png" /> of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079052.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079053.png" /> of finite type is identical with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079054.png" />, and that Krull's theorem holds: The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079055.png" />-adic topology of a Noetherian ring is separable if and only if the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079056.png" /> contains no zero divisors. In particular, the topology is separable if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079057.png" /> is contained in the (Jacobson) radical of the ring. | + | A fundamental tool in the study of adic topologies of rings is the Artin–Rees lemma: Let $ A $ |
| + | be a commutative Noetherian ring, let $ \mathfrak A $ |
| + | be an ideal in $ A $, |
| + | let $ E $ |
| + | be an $ A $- |
| + | module of finite type, and let $ F $ |
| + | be a submodule of $ E $. |
| + | Then there exists a $ k $ |
| + | such that, for any $ n \geq 0 $, |
| + | the following equality is valid: |
| + | |
| + | $$ |
| + | \mathfrak A ^ {n} ( \mathfrak A ^ {k} E \cap F ) = \ |
| + | \mathfrak A ^ {k + n } E \cap F . |
| + | $$ |
| + | |
| + | The topological interpretation of the Artin–Rees lemma shows that the $ \mathfrak A $- |
| + | adic topology of $ F $ |
| + | is induced by the $ \mathfrak A $- |
| + | adic topology of $ E $. |
| + | It follows that the completion $ \widehat{A} $ |
| + | of a ring $ A $ |
| + | in the $ \mathfrak A $- |
| + | adic topology is a flat $ A $- |
| + | module (cf. [[Flat module|Flat module]]), that the completion $ \widehat{E} $ |
| + | of the $ A $- |
| + | module $ E $ |
| + | of finite type is identical with $ E \otimes _ {A} \widehat{A} $, |
| + | and that Krull's theorem holds: The $ \mathfrak A $- |
| + | adic topology of a Noetherian ring is separable if and only if the set $ 1 + \mathfrak A $ |
| + | contains no zero divisors. In particular, the topology is separable if $ \mathfrak A $ |
| + | is contained in the (Jacobson) radical of the ring. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Zariski, P. Samuel, "Commutative algebra" , '''2''' , Springer (1975)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Zariski, P. Samuel, "Commutative algebra" , '''2''' , Springer (1975)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)</TD></TR></table> |
A linear topology of a ring $ A $
in which the fundamental system of neighbourhoods of zero consists of the powers $ \mathfrak A ^ {n} $
of some two-sided ideal $ \mathfrak A $.
The topology is then said to be $ \mathfrak A $-
adic, and the ideal $ \mathfrak A $
is said to be the defining ideal of the topology. The closure of any set $ F \subset A $
in the $ \mathfrak A $-
adic topology is equal to $ \cap _ {n \geq 0 } ( F + \mathfrak A ^ {n} ) $;
in particular, the topology is separable if, and only if, $ \cap _ {n \geq 0 } \mathfrak A ^ {n} = (0) $.
The separable completion $ \widehat{A} $
of the ring $ A $
in an $ \mathfrak A $-
adic topology is isomorphic to the projective limit $ \lim\limits _ \leftarrow ( A / \mathfrak A ^ {n} ) $.
The $ \mathfrak A $-
adic topology of an $ A $-
module $ M $
is defined in a similar manner: its fundamental system of neighbourhoods of zero is given by the submodules $ \mathfrak A ^ {n} M $;
in the $ \mathfrak A $-
adic topology $ M $
becomes a topological $ A $-
module.
Let $ A $
be a commutative ring with identity with an $ \mathfrak A $-
adic topology and let $ \widehat{A} $
be its completion; if $ \mathfrak A $
is an ideal of finite type, the topology in $ \widehat{A} $
is $ \widehat{\mathfrak A} $-
adic, and $ {\widehat{\mathfrak A} } {} ^ {n} = \mathfrak A ^ {n} \widehat{A} $.
If $ \mathfrak A $
is a maximal ideal, then $ \widehat{A} $
is a local ring with maximal ideal $ \widehat{\mathfrak A} $.
A local ring topology is an adic topology defined by its maximal ideal (an $ \mathfrak m $-
adic topology).
A fundamental tool in the study of adic topologies of rings is the Artin–Rees lemma: Let $ A $
be a commutative Noetherian ring, let $ \mathfrak A $
be an ideal in $ A $,
let $ E $
be an $ A $-
module of finite type, and let $ F $
be a submodule of $ E $.
Then there exists a $ k $
such that, for any $ n \geq 0 $,
the following equality is valid:
$$
\mathfrak A ^ {n} ( \mathfrak A ^ {k} E \cap F ) = \
\mathfrak A ^ {k + n } E \cap F .
$$
The topological interpretation of the Artin–Rees lemma shows that the $ \mathfrak A $-
adic topology of $ F $
is induced by the $ \mathfrak A $-
adic topology of $ E $.
It follows that the completion $ \widehat{A} $
of a ring $ A $
in the $ \mathfrak A $-
adic topology is a flat $ A $-
module (cf. Flat module), that the completion $ \widehat{E} $
of the $ A $-
module $ E $
of finite type is identical with $ E \otimes _ {A} \widehat{A} $,
and that Krull's theorem holds: The $ \mathfrak A $-
adic topology of a Noetherian ring is separable if and only if the set $ 1 + \mathfrak A $
contains no zero divisors. In particular, the topology is separable if $ \mathfrak A $
is contained in the (Jacobson) radical of the ring.
References
[1] | O. Zariski, P. Samuel, "Commutative algebra" , 2 , Springer (1975) |
[2] | N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French) |