|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | A holomorphic or meromorphic differential on a compact, or closed, Riemann surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102101.png" /> (cf. [[Differential on a Riemann surface|Differential on a Riemann surface]]). | + | <!-- |
| + | a0102101.png |
| + | $#A+1 = 145 n = 0 |
| + | $#C+1 = 145 : ~/encyclopedia/old_files/data/A010/A.0100210 Abelian differential |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102102.png" /> be the genus of the surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102103.png" /> (cf. [[Genus of a surface|Genus of a surface]]); let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102104.png" /> be the cycles of a canonical basis of the homology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102105.png" />. Depending on the nature of their singular points, one distinguishes three kinds of Abelian differentials: I, II and III, with proper inclusions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102106.png" />. Abelian differentials of the first kind are first-order differentials that are holomorphic everywhere on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102107.png" /> and that, in a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102108.png" /> of each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102109.png" />, have the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021010.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021011.png" /> is a local uniformizing variable in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021013.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021014.png" /> is a holomorphic, or regular, analytic function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021015.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021016.png" />. The addition of Abelian differentials and multiplication by a holomorphic function are defined by natural rules: If
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021017.png" /></td> </tr></table>
| + | A holomorphic or meromorphic differential on a compact, or closed, Riemann surface $ S $( |
| + | cf. [[Differential on a Riemann surface|Differential on a Riemann surface]]). |
| + | |
| + | Let $ g $ |
| + | be the genus of the surface $ S $( |
| + | cf. [[Genus of a surface|Genus of a surface]]); let $ a _ {1} b _ {1} \dots a _ {g} b _ {g} $ |
| + | be the cycles of a canonical basis of the homology of $ S $. |
| + | Depending on the nature of their singular points, one distinguishes three kinds of Abelian differentials: I, II and III, with proper inclusions $ I \subset II \subset III $. |
| + | Abelian differentials of the first kind are first-order differentials that are holomorphic everywhere on $ S $ |
| + | and that, in a neighbourhood $ U $ |
| + | of each point $ P _ {0} \in S $, |
| + | have the form $ \omega = p d z = p (z) d z $, |
| + | where $ z = x + iy $ |
| + | is a local uniformizing variable in $ U $, |
| + | $ d z = d x + i dy $, |
| + | and $ p (z) $ |
| + | is a holomorphic, or regular, analytic function of $ z $ |
| + | in $ U $. |
| + | The addition of Abelian differentials and multiplication by a holomorphic function are defined by natural rules: If |
| + | |
| + | $$ |
| + | \omega = p dz,\ \pi = q dz,\ a = a (z), |
| + | $$ |
| | | |
| then | | then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021018.png" /></td> </tr></table>
| + | $$ |
| + | \omega + \pi = (p + q ) dz,\ a \omega = (a p ) dz. |
| + | $$ |
| | | |
− | The Abelian differentials of the first kind form a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021019.png" />-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021020.png" />. After the introduction of the scalar product | + | The Abelian differentials of the first kind form a $ g $- |
| + | dimensional vector space $ \mathfrak A $. |
| + | After the introduction of the scalar product |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021021.png" /></td> </tr></table>
| + | $$ |
| + | ( \omega , \pi ) = {\int\limits \int\limits } _ { S } \omega \star \overline \pi \; , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021022.png" /> is the [[Exterior product|exterior product]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021023.png" /> with the star-conjugate differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021024.png" />, the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021025.png" /> becomes a Hilbert space. | + | where $ \omega \star \overline \pi \; $ |
| + | is the [[Exterior product|exterior product]] of $ \omega $ |
| + | with the star-conjugate differential $ \overline \pi \; $, |
| + | the space $ \mathfrak A $ |
| + | becomes a Hilbert space. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021026.png" /> be the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021027.png" />- and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021028.png" />-periods of the Abelian differential of the first kind <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021029.png" />, i.e. the integrals | + | Let $ A _ {1} , B _ {1} \dots A _ {g} , B _ {g} $ |
| + | be the $ A $- |
| + | and $ B $- |
| + | periods of the Abelian differential of the first kind $ \omega $, |
| + | i.e. the integrals |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021030.png" /></td> </tr></table>
| + | $$ |
| + | A _ {j} = \int\limits _ {a _ {j} } \omega ,\ \ |
| + | B _ {j} = \int\limits _ {b _ {j} } \omega ,\ \ |
| + | j = 1 \dots g . |
| + | $$ |
| | | |
| The following relation then holds: | | The following relation then holds: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021031.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | $$ \tag{1 } |
| + | \| \omega \| ^ {2} = i \sum _ {j = 1 } ^ { g } |
| + | ( A _ {j} \overline{B}\; _ {j} - B _ {j} \overline{A}\; _ {j} ) \geq 0 . |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021032.png" /> are the periods of another Abelian differential of the first kind <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021033.png" />, then one has | + | If $ A _ {1} ^ \prime , B _ {1} ^ \prime \dots A _ {g} ^ \prime , B _ {g} ^ \prime $ |
| + | are the periods of another Abelian differential of the first kind $ \pi $, |
| + | then one has |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021034.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | $$ \tag{2 } |
| + | i ( \omega , \overline \pi \; ) = \sum _ {j = 1 } ^ { g } |
| + | ( A _ {j} B _ {j} ^ \prime - B _ {j} A _ {j} ^ \prime ) = 0 . |
| + | $$ |
| | | |
− | The relations (1) and (2) are known as the bilinear Riemann relations for Abelian differentials of the first kind. A canonical basis of the Abelian differentials of the first kind, i.e. a canonical basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021035.png" /> of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021036.png" />, can be chosen so that | + | The relations (1) and (2) are known as the bilinear Riemann relations for Abelian differentials of the first kind. A canonical basis of the Abelian differentials of the first kind, i.e. a canonical basis $ \phi _ {1} \dots \phi _ {g} $ |
| + | of the space $ \mathfrak A $, |
| + | can be chosen so that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021037.png" /></td> </tr></table>
| + | $$ |
| + | A _ {ij } = \int\limits _ {a _ {j} } \phi _ {i} = \delta _ {ij } , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021039.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021040.png" />. The matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021042.png" />, of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021043.png" />-periods | + | where $ \delta _ {ii} = 1 $ |
| + | and $ \delta _ {ij} = 0 $ |
| + | if $ j \neq i $. |
| + | The matrix $ (B _ {ij} ) $, |
| + | $ i, j = 1 \dots g $, |
| + | of the $ B $- |
| + | periods |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021044.png" /></td> </tr></table>
| + | $$ |
| + | B _ {ij} = \int\limits _ {b _ {j} } \phi _ {i} $$ |
| | | |
− | is then symmetric, and the matrix of the imaginary parts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021045.png" /> is positive definite. An Abelian differential of the first kind for which all the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021046.png" />-periods or all the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021047.png" />-periods are zero is identically equal to zero. If all the periods of an Abelian differential of the first kind <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021048.png" /> are real, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021049.png" />. | + | is then symmetric, and the matrix of the imaginary parts $ ( \mathop{\rm Im} B _ {ij} ) $ |
| + | is positive definite. An Abelian differential of the first kind for which all the $ A $- |
| + | periods or all the $ B $- |
| + | periods are zero is identically equal to zero. If all the periods of an Abelian differential of the first kind $ \omega $ |
| + | are real, then $ \omega = 0 $. |
| | | |
− | Abelian differentials of the second and third kinds are, in general, meromorphic differentials, i.e. analytic differentials which have on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021050.png" /> not more than a finite set of singular points that are poles and which have local representations | + | Abelian differentials of the second and third kinds are, in general, meromorphic differentials, i.e. analytic differentials which have on $ S $ |
| + | not more than a finite set of singular points that are poles and which have local representations |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021051.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
| + | $$ \tag{3 } |
| + | \left ( a _ |
| + | \frac{-n}{z} |
| + | ^ {n} |
| + | + \dots + a _ |
| + | \frac{-1}{z} |
| + | + f ( z ) \right ) dz, |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021052.png" /> is a regular function, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021053.png" /> is the order of the pole (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021054.png" />), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021055.png" /> is the residue of the pole. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021056.png" />, the pole is said to be simple. An Abelian differential of the second kind is a meromorphic differential all residues of which are zero, i.e. a meromorphic differential with local representation | + | where $ f(z) $ |
| + | is a regular function, $ n $ |
| + | is the order of the pole (if $ a _ {-n} \neq 0 $), |
| + | and $ a _ {-1} $ |
| + | is the residue of the pole. If $ n = 1 $, |
| + | the pole is said to be simple. An Abelian differential of the second kind is a meromorphic differential all residues of which are zero, i.e. a meromorphic differential with local representation |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021057.png" /></td> </tr></table>
| + | $$ |
| + | \left ( a _ |
| + | \frac{-n}{z} |
| + | ^ {n} |
| + | + \dots + a _ |
| + | \frac{-2}{z} |
| + | ^ {2} + f ( z ) \right ) dz, |
| + | $$ |
| | | |
| An Abelian differential of the third kind is an arbitrary Abelian differential. | | An Abelian differential of the third kind is an arbitrary Abelian differential. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021058.png" /> be an arbitrary Abelian differential with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021059.png" />-periods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021060.png" />; the Abelian differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021061.png" /> then has zero <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021062.png" />-periods and is known as a normalized Abelian differential. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021063.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021064.png" /> are any two points on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021065.png" />, one can construct a normalized Abelian differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021066.png" /> with the singularities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021067.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021068.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021069.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021070.png" />, which is known as a normal Abelian differential of the third kind. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021071.png" /> be an arbitrary Abelian differential with residues <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021072.png" /> at the respective points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021073.png" />; then, always, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021074.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021075.png" /> is any arbitrary point on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021076.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021077.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021078.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021079.png" /> can be represented as a linear combination of a normalized Abelian differential of the second kind <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021080.png" />, a finite number of normal Abelian differentials of the third kind <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021081.png" />, and basis Abelian differentials of the first kind <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021082.png" />: | + | Let $ \omega $ |
| + | be an arbitrary Abelian differential with $ A $- |
| + | periods $ A _ {1} \dots A _ {g} $; |
| + | the Abelian differential $ \omega ^ \prime = \omega - A _ {1} \phi _ {1} - \dots -A _ {g} \phi _ {g} $ |
| + | then has zero $ A $- |
| + | periods and is known as a normalized Abelian differential. In particular, if $ P _ {1} $ |
| + | and $ P _ {2} $ |
| + | are any two points on $ S $, |
| + | one can construct a normalized Abelian differential $ \omega _ {1,2} $ |
| + | with the singularities $ (1/z) d z $ |
| + | in $ P _ {1} $ |
| + | and $ (-1/z) d z $ |
| + | in $ P _ {2} $, |
| + | which is known as a normal Abelian differential of the third kind. Let $ \omega $ |
| + | be an arbitrary Abelian differential with residues $ c _ {1} \dots c _ {n} $ |
| + | at the respective points $ P _ {1} \dots P _ {n} $; |
| + | then, always, $ c _ {1} + \dots + c _ {n} = 0 $. |
| + | If $ P _ {0} $ |
| + | is any arbitrary point on $ S $ |
| + | such that $ P _ {0} \neq P _ {j} $, |
| + | $ j = 1 \dots n $, |
| + | then $ \omega $ |
| + | can be represented as a linear combination of a normalized Abelian differential of the second kind $ \omega _ {2} $, |
| + | a finite number of normal Abelian differentials of the third kind $ \omega _ {j,0} $, |
| + | and basis Abelian differentials of the first kind $ \phi _ {k} $: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021083.png" /></td> </tr></table>
| + | $$ |
| + | \omega = \omega _ {2} + \sum _ {j=1 } ^ { n } c _ {j} \omega _ {j,0} + |
| + | \sum _ {k= 1 } ^ { g } A _ {k} \phi _ {k} . |
| + | $$ |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021084.png" /> be an Abelian differential of the third kind with only simple poles with residues <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021085.png" /> at the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021086.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021087.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021088.png" /> be an arbitrary Abelian differential of the first kind: | + | Let $ \omega _ {3} $ |
| + | be an Abelian differential of the third kind with only simple poles with residues $ c _ {j} $ |
| + | at the points $ P _ {j} $, |
| + | $ j = 1 \dots n $, |
| + | and let $ \omega _ {1} $ |
| + | be an arbitrary Abelian differential of the first kind: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021089.png" /></td> </tr></table>
| + | $$ |
| + | A _ {k} = \int\limits _ {a _ {k} } \omega _ {1} ,\ \ |
| + | B _ {k} = \int\limits _ {b _ {k} } \omega _ {1} , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021090.png" /></td> </tr></table>
| + | $$ |
| + | A _ {k} ^ \prime = \int\limits _ {a _ {k} } \omega _ {3} ,\ \ |
| + | B _ {k} ^ \prime = \int\limits _ {b _ {k} } \omega _ {3} ,\ k = 1 \dots g, |
| + | $$ |
| | | |
− | where the cycles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021091.png" /> do not pass through the poles of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021092.png" />. Let the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021093.png" /> not lie on the cycles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021094.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021095.png" /> be a path from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021096.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021097.png" />. One then obtains bilinear relations for Abelian differentials of the first and third kinds: | + | where the cycles $ a _ {k} , b _ {k} $ |
| + | do not pass through the poles of $ \omega _ {3} $. |
| + | Let the point $ P _ {0} \in S $ |
| + | not lie on the cycles $ a _ {k} , b _ {k} $ |
| + | and let $ L _ {j} $ |
| + | be a path from $ P _ {0} $ |
| + | to $ P _ {j} $. |
| + | One then obtains bilinear relations for Abelian differentials of the first and third kinds: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021098.png" /></td> </tr></table>
| + | $$ |
| + | \sum _ {k = 1 } ^ { g } ( A _ {k} B _ {k} ^ \prime - B _ {k} A _ {k} ^ \prime ) = 2 \pi i \sum _ {j = 1 } ^ { n } |
| + | c _ {j} \int\limits _ {L _ {j} } \omega _ {1} . |
| + | $$ |
| | | |
| Bilinear relations of a similar type also exist between Abelian differentials of the first and second kinds. | | Bilinear relations of a similar type also exist between Abelian differentials of the first and second kinds. |
| | | |
− | In addition to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021099.png" />- and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210100.png" />-periods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210101.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210102.png" />, known as the cyclic periods, an arbitrary Abelian differential of the third kind also has polar periods of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210103.png" /> along zero-homologous cycles which encircle the poles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210104.png" />. One thus has, for an arbitrary cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210105.png" />, | + | In addition to the $ A $- |
| + | and $ B $- |
| + | periods $ A _ {k} , B _ {k} $, |
| + | $ k = 1 \dots g $, |
| + | known as the cyclic periods, an arbitrary Abelian differential of the third kind also has polar periods of the form $ 2 \pi i c _ {j} $ |
| + | along zero-homologous cycles which encircle the poles $ P _ {j} $. |
| + | One thus has, for an arbitrary cycle $ \gamma $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210106.png" /></td> </tr></table>
| + | $$ |
| + | \int\limits _ \gamma \omega _ {3} = \sum _ {k = 1 } ^ { g } |
| + | ( l _ {k} A _ {k} + l _ {g+k} B _ {k} ) + |
| + | 2 \pi i \sum _ {j = 1 } ^ { n } m _ {j} c _ {j} , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210107.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210108.png" /> are integers. | + | where $ l _ {k} , l _ {g+k} $, |
| + | and $ m _ {j} $ |
| + | are integers. |
| | | |
− | Important properties of Abelian differentials are described in terms of divisors. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210109.png" /> be the divisor of the Abelian differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210110.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210111.png" /> is an expression of the type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210112.png" />, where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210113.png" />-s are all the zeros and poles of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210114.png" /> and where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210115.png" />-s are their multiplicities or orders. The degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210116.png" /> of the divisor of the Abelian differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210117.png" /> depends only on the genus of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210118.png" />, and one always has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210119.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210120.png" /> be some given divisor. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210121.png" /> denote the complex vector space of Abelian differentials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210122.png" /> of which the divisors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210123.png" /> are multiples of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210124.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210125.png" /> denote the vector space of meromorphic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210126.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210127.png" /> of which the divisors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210128.png" /> are multiples of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210129.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210130.png" />. Other important information on the dimension of these spaces is contained in the Riemann–Roch theorem: The equality | + | Important properties of Abelian differentials are described in terms of divisors. Let $ ( \omega ) $ |
| + | be the divisor of the Abelian differential $ \omega $, |
| + | i.e. $ ( \omega ) $ |
| + | is an expression of the type $ ( \omega ) = P _ {1} ^ {\alpha _ {1} } {} \dots P _ {n} ^ {\alpha _ {n} } $, |
| + | where the $ P _ {j} $- |
| + | s are all the zeros and poles of $ \omega $ |
| + | and where the $ \alpha _ {j} $- |
| + | s are their multiplicities or orders. The degree $ \textrm{ d } [( \omega )] = \alpha _ {1} + \dots + \alpha _ {n} $ |
| + | of the divisor of the Abelian differential $ \omega $ |
| + | depends only on the genus of $ S $, |
| + | and one always has $ \textrm{ d } [( \omega )] = 2g - 2 $. |
| + | Let $ \mathfrak a $ |
| + | be some given divisor. Let $ \Omega ( \mathfrak a ) $ |
| + | denote the complex vector space of Abelian differentials $ \omega $ |
| + | of which the divisors $ ( \omega ) $ |
| + | are multiples of $ \mathfrak a $, |
| + | and let $ L ( \mathfrak a ) $ |
| + | denote the vector space of meromorphic functions $ f $ |
| + | on $ S $ |
| + | of which the divisors $ (f) $ |
| + | are multiples of $ \mathfrak a $. |
| + | Then $ { \mathop{\rm dim} } \Omega ( \mathfrak a ) = { \mathop{\rm dim} } L ( \mathfrak a / ( \omega )) $. |
| + | Other important information on the dimension of these spaces is contained in the Riemann–Roch theorem: The equality |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210131.png" /></td> </tr></table>
| + | $$ |
| + | \mathop{\rm dim} L ( \mathfrak a ^ {-1} ) - \mathop{\rm dim} \Omega ( \mathfrak a ) = \ |
| + | \textrm{ d } [ \mathfrak a ] - g + 1 |
| + | $$ |
| | | |
− | is valid for any divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210132.png" />. It follows from the above, for example, that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210133.png" />, i.e. on the surface of a torus, a meromorphic function cannot have a single simple pole. | + | is valid for any divisor $ \mathfrak a $. |
| + | It follows from the above, for example, that if $ g = 1 $, |
| + | i.e. on the surface of a torus, a meromorphic function cannot have a single simple pole. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210134.png" /> be an arbitrary compact Riemann surface on which there are meromorphic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210135.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210136.png" /> which satisfy an irreducible algebraic equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210137.png" />. Any arbitrary Abelian differential on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210138.png" /> can then be expressed as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210139.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210140.png" /> is some rational function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210141.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210142.png" />; conversely, the expression <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210143.png" /> is an Abelian differential. This means that an arbitrary [[Abelian integral|Abelian integral]] | + | Let $ S $ |
| + | be an arbitrary compact Riemann surface on which there are meromorphic functions $ z $ |
| + | and $ w $ |
| + | which satisfy an irreducible algebraic equation $ F (z, w ) = 0 $. |
| + | Any arbitrary Abelian differential on $ S $ |
| + | can then be expressed as $ \omega = R (z, w ) d z $ |
| + | where $ R (z, w ) $ |
| + | is some rational function in $ z $ |
| + | and $ w $; |
| + | conversely, the expression $ \omega = R (z, w) dz $ |
| + | is an Abelian differential. This means that an arbitrary [[Abelian integral|Abelian integral]] |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210144.png" /></td> </tr></table>
| + | $$ |
| + | \int\limits R ( z, w ) dz = \int\limits \omega |
| + | $$ |
| | | |
− | is the integral of some Abelian differential on a compact Riemann surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210145.png" />. | + | is the integral of some Abelian differential on a compact Riemann surface $ S $. |
| | | |
| See also [[Algebraic function|Algebraic function]]. | | See also [[Algebraic function|Algebraic function]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Nevanlinna, "Uniformisierung" , Springer (1953) pp. Chapt.5</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.G. Chebotarev, "The theory of algebraic functions" , Moscow-Leningrad (1948) pp. Chapt.3;8 (In Russian)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10 {{MR|0092855}} {{ZBL|0078.06602}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Nevanlinna, "Uniformisierung" , Springer (1953) pp. Chapt.5 {{MR|0057335}} {{ZBL|0053.05003}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.G. Chebotarev, "The theory of algebraic functions" , Moscow-Leningrad (1948) pp. Chapt.3;8 (In Russian)</TD></TR></table> |
− | | |
− | | |
| | | |
| ====Comments==== | | ====Comments==== |
Line 92: |
Line 280: |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Lang, "Introduction to algebraic and abelian functions" , Addison-Wesley (1972)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Lang, "Introduction to algebraic and abelian functions" , Addison-Wesley (1972) {{MR|0327780}} {{ZBL|0255.14001}} </TD></TR></table> |
A holomorphic or meromorphic differential on a compact, or closed, Riemann surface $ S $(
cf. Differential on a Riemann surface).
Let $ g $
be the genus of the surface $ S $(
cf. Genus of a surface); let $ a _ {1} b _ {1} \dots a _ {g} b _ {g} $
be the cycles of a canonical basis of the homology of $ S $.
Depending on the nature of their singular points, one distinguishes three kinds of Abelian differentials: I, II and III, with proper inclusions $ I \subset II \subset III $.
Abelian differentials of the first kind are first-order differentials that are holomorphic everywhere on $ S $
and that, in a neighbourhood $ U $
of each point $ P _ {0} \in S $,
have the form $ \omega = p d z = p (z) d z $,
where $ z = x + iy $
is a local uniformizing variable in $ U $,
$ d z = d x + i dy $,
and $ p (z) $
is a holomorphic, or regular, analytic function of $ z $
in $ U $.
The addition of Abelian differentials and multiplication by a holomorphic function are defined by natural rules: If
$$
\omega = p dz,\ \pi = q dz,\ a = a (z),
$$
then
$$
\omega + \pi = (p + q ) dz,\ a \omega = (a p ) dz.
$$
The Abelian differentials of the first kind form a $ g $-
dimensional vector space $ \mathfrak A $.
After the introduction of the scalar product
$$
( \omega , \pi ) = {\int\limits \int\limits } _ { S } \omega \star \overline \pi \; ,
$$
where $ \omega \star \overline \pi \; $
is the exterior product of $ \omega $
with the star-conjugate differential $ \overline \pi \; $,
the space $ \mathfrak A $
becomes a Hilbert space.
Let $ A _ {1} , B _ {1} \dots A _ {g} , B _ {g} $
be the $ A $-
and $ B $-
periods of the Abelian differential of the first kind $ \omega $,
i.e. the integrals
$$
A _ {j} = \int\limits _ {a _ {j} } \omega ,\ \
B _ {j} = \int\limits _ {b _ {j} } \omega ,\ \
j = 1 \dots g .
$$
The following relation then holds:
$$ \tag{1 }
\| \omega \| ^ {2} = i \sum _ {j = 1 } ^ { g }
( A _ {j} \overline{B}\; _ {j} - B _ {j} \overline{A}\; _ {j} ) \geq 0 .
$$
If $ A _ {1} ^ \prime , B _ {1} ^ \prime \dots A _ {g} ^ \prime , B _ {g} ^ \prime $
are the periods of another Abelian differential of the first kind $ \pi $,
then one has
$$ \tag{2 }
i ( \omega , \overline \pi \; ) = \sum _ {j = 1 } ^ { g }
( A _ {j} B _ {j} ^ \prime - B _ {j} A _ {j} ^ \prime ) = 0 .
$$
The relations (1) and (2) are known as the bilinear Riemann relations for Abelian differentials of the first kind. A canonical basis of the Abelian differentials of the first kind, i.e. a canonical basis $ \phi _ {1} \dots \phi _ {g} $
of the space $ \mathfrak A $,
can be chosen so that
$$
A _ {ij } = \int\limits _ {a _ {j} } \phi _ {i} = \delta _ {ij } ,
$$
where $ \delta _ {ii} = 1 $
and $ \delta _ {ij} = 0 $
if $ j \neq i $.
The matrix $ (B _ {ij} ) $,
$ i, j = 1 \dots g $,
of the $ B $-
periods
$$
B _ {ij} = \int\limits _ {b _ {j} } \phi _ {i} $$
is then symmetric, and the matrix of the imaginary parts $ ( \mathop{\rm Im} B _ {ij} ) $
is positive definite. An Abelian differential of the first kind for which all the $ A $-
periods or all the $ B $-
periods are zero is identically equal to zero. If all the periods of an Abelian differential of the first kind $ \omega $
are real, then $ \omega = 0 $.
Abelian differentials of the second and third kinds are, in general, meromorphic differentials, i.e. analytic differentials which have on $ S $
not more than a finite set of singular points that are poles and which have local representations
$$ \tag{3 }
\left ( a _
\frac{-n}{z}
^ {n}
+ \dots + a _
\frac{-1}{z}
+ f ( z ) \right ) dz,
$$
where $ f(z) $
is a regular function, $ n $
is the order of the pole (if $ a _ {-n} \neq 0 $),
and $ a _ {-1} $
is the residue of the pole. If $ n = 1 $,
the pole is said to be simple. An Abelian differential of the second kind is a meromorphic differential all residues of which are zero, i.e. a meromorphic differential with local representation
$$
\left ( a _
\frac{-n}{z}
^ {n}
+ \dots + a _
\frac{-2}{z}
^ {2} + f ( z ) \right ) dz,
$$
An Abelian differential of the third kind is an arbitrary Abelian differential.
Let $ \omega $
be an arbitrary Abelian differential with $ A $-
periods $ A _ {1} \dots A _ {g} $;
the Abelian differential $ \omega ^ \prime = \omega - A _ {1} \phi _ {1} - \dots -A _ {g} \phi _ {g} $
then has zero $ A $-
periods and is known as a normalized Abelian differential. In particular, if $ P _ {1} $
and $ P _ {2} $
are any two points on $ S $,
one can construct a normalized Abelian differential $ \omega _ {1,2} $
with the singularities $ (1/z) d z $
in $ P _ {1} $
and $ (-1/z) d z $
in $ P _ {2} $,
which is known as a normal Abelian differential of the third kind. Let $ \omega $
be an arbitrary Abelian differential with residues $ c _ {1} \dots c _ {n} $
at the respective points $ P _ {1} \dots P _ {n} $;
then, always, $ c _ {1} + \dots + c _ {n} = 0 $.
If $ P _ {0} $
is any arbitrary point on $ S $
such that $ P _ {0} \neq P _ {j} $,
$ j = 1 \dots n $,
then $ \omega $
can be represented as a linear combination of a normalized Abelian differential of the second kind $ \omega _ {2} $,
a finite number of normal Abelian differentials of the third kind $ \omega _ {j,0} $,
and basis Abelian differentials of the first kind $ \phi _ {k} $:
$$
\omega = \omega _ {2} + \sum _ {j=1 } ^ { n } c _ {j} \omega _ {j,0} +
\sum _ {k= 1 } ^ { g } A _ {k} \phi _ {k} .
$$
Let $ \omega _ {3} $
be an Abelian differential of the third kind with only simple poles with residues $ c _ {j} $
at the points $ P _ {j} $,
$ j = 1 \dots n $,
and let $ \omega _ {1} $
be an arbitrary Abelian differential of the first kind:
$$
A _ {k} = \int\limits _ {a _ {k} } \omega _ {1} ,\ \
B _ {k} = \int\limits _ {b _ {k} } \omega _ {1} ,
$$
$$
A _ {k} ^ \prime = \int\limits _ {a _ {k} } \omega _ {3} ,\ \
B _ {k} ^ \prime = \int\limits _ {b _ {k} } \omega _ {3} ,\ k = 1 \dots g,
$$
where the cycles $ a _ {k} , b _ {k} $
do not pass through the poles of $ \omega _ {3} $.
Let the point $ P _ {0} \in S $
not lie on the cycles $ a _ {k} , b _ {k} $
and let $ L _ {j} $
be a path from $ P _ {0} $
to $ P _ {j} $.
One then obtains bilinear relations for Abelian differentials of the first and third kinds:
$$
\sum _ {k = 1 } ^ { g } ( A _ {k} B _ {k} ^ \prime - B _ {k} A _ {k} ^ \prime ) = 2 \pi i \sum _ {j = 1 } ^ { n }
c _ {j} \int\limits _ {L _ {j} } \omega _ {1} .
$$
Bilinear relations of a similar type also exist between Abelian differentials of the first and second kinds.
In addition to the $ A $-
and $ B $-
periods $ A _ {k} , B _ {k} $,
$ k = 1 \dots g $,
known as the cyclic periods, an arbitrary Abelian differential of the third kind also has polar periods of the form $ 2 \pi i c _ {j} $
along zero-homologous cycles which encircle the poles $ P _ {j} $.
One thus has, for an arbitrary cycle $ \gamma $,
$$
\int\limits _ \gamma \omega _ {3} = \sum _ {k = 1 } ^ { g }
( l _ {k} A _ {k} + l _ {g+k} B _ {k} ) +
2 \pi i \sum _ {j = 1 } ^ { n } m _ {j} c _ {j} ,
$$
where $ l _ {k} , l _ {g+k} $,
and $ m _ {j} $
are integers.
Important properties of Abelian differentials are described in terms of divisors. Let $ ( \omega ) $
be the divisor of the Abelian differential $ \omega $,
i.e. $ ( \omega ) $
is an expression of the type $ ( \omega ) = P _ {1} ^ {\alpha _ {1} } {} \dots P _ {n} ^ {\alpha _ {n} } $,
where the $ P _ {j} $-
s are all the zeros and poles of $ \omega $
and where the $ \alpha _ {j} $-
s are their multiplicities or orders. The degree $ \textrm{ d } [( \omega )] = \alpha _ {1} + \dots + \alpha _ {n} $
of the divisor of the Abelian differential $ \omega $
depends only on the genus of $ S $,
and one always has $ \textrm{ d } [( \omega )] = 2g - 2 $.
Let $ \mathfrak a $
be some given divisor. Let $ \Omega ( \mathfrak a ) $
denote the complex vector space of Abelian differentials $ \omega $
of which the divisors $ ( \omega ) $
are multiples of $ \mathfrak a $,
and let $ L ( \mathfrak a ) $
denote the vector space of meromorphic functions $ f $
on $ S $
of which the divisors $ (f) $
are multiples of $ \mathfrak a $.
Then $ { \mathop{\rm dim} } \Omega ( \mathfrak a ) = { \mathop{\rm dim} } L ( \mathfrak a / ( \omega )) $.
Other important information on the dimension of these spaces is contained in the Riemann–Roch theorem: The equality
$$
\mathop{\rm dim} L ( \mathfrak a ^ {-1} ) - \mathop{\rm dim} \Omega ( \mathfrak a ) = \
\textrm{ d } [ \mathfrak a ] - g + 1
$$
is valid for any divisor $ \mathfrak a $.
It follows from the above, for example, that if $ g = 1 $,
i.e. on the surface of a torus, a meromorphic function cannot have a single simple pole.
Let $ S $
be an arbitrary compact Riemann surface on which there are meromorphic functions $ z $
and $ w $
which satisfy an irreducible algebraic equation $ F (z, w ) = 0 $.
Any arbitrary Abelian differential on $ S $
can then be expressed as $ \omega = R (z, w ) d z $
where $ R (z, w ) $
is some rational function in $ z $
and $ w $;
conversely, the expression $ \omega = R (z, w) dz $
is an Abelian differential. This means that an arbitrary Abelian integral
$$
\int\limits R ( z, w ) dz = \int\limits \omega
$$
is the integral of some Abelian differential on a compact Riemann surface $ S $.
See also Algebraic function.
References
[1] | G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10 MR0092855 Zbl 0078.06602 |
[2] | R. Nevanlinna, "Uniformisierung" , Springer (1953) pp. Chapt.5 MR0057335 Zbl 0053.05003 |
[3] | N.G. Chebotarev, "The theory of algebraic functions" , Moscow-Leningrad (1948) pp. Chapt.3;8 (In Russian) |
Another good reference, replacing [3], is [a1].
References