|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | ''comparison of functions, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o0700603.png" />-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o0700604.png" /> relations, asymptotic relations''
| + | <!-- |
| + | o0700603.png |
| + | $#A+1 = 94 n = 0 |
| + | $#C+1 = 94 : ~/encyclopedia/old_files/data/O070/O.0700060 Order relation, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| + | ''comparison of functions, $ O $- |
| + | $ o $ |
| + | relations, asymptotic relations'' |
| | | |
| A notion arising in studies on the behaviour of a function with respect to another function in a neighbourhood of some point (this point may be infinite). | | A notion arising in studies on the behaviour of a function with respect to another function in a neighbourhood of some point (this point may be infinite). |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o0700605.png" /> be a [[Limit point of a set|limit point of a set]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o0700606.png" />. If for two functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o0700607.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o0700608.png" /> there exist constants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o0700609.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006010.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006011.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006013.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006014.png" /> is called a function which is bounded in comparison with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006015.png" /> in some deleted neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006016.png" />, and this is written as | + | Let $ x _ {0} $ |
| + | be a [[Limit point of a set|limit point of a set]] $ E $. |
| + | If for two functions $ f $ |
| + | and $ g $ |
| + | there exist constants $ c > 0 $ |
| + | and $ \delta > 0 $ |
| + | such that $ | f (x) | \leq c | g (x) | $ |
| + | for $ | x - x _ {0} | < \delta $, |
| + | $ x \neq x _ {0} $, |
| + | then $ f $ |
| + | is called a function which is bounded in comparison with $ g $ |
| + | in some deleted neighbourhood of $ x _ {0} $, |
| + | and this is written as |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006017.png" /></td> </tr></table>
| + | $$ |
| + | f (x) = O ( g (x) ) \ \textrm{ as } x \rightarrow x _ {0} $$ |
| | | |
− | (read "f is of the order of g" ); <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006018.png" /> means that the considered property holds only in some deleted neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006019.png" />. This definition can be naturally used when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006021.png" />. | + | (read "f is of the order of g" ); $ x \rightarrow x _ {0} $ |
| + | means that the considered property holds only in some deleted neighbourhood of $ x _ {0} $. |
| + | This definition can be naturally used when $ x \rightarrow \infty $, |
| + | $ x \rightarrow - \infty $. |
| | | |
− | If two functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006023.png" /> are such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006025.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006026.png" />, then they are called functions of the same order as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006027.png" />. For instance, if two functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006028.png" /> are such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006030.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006031.png" /> and if the limit | + | If two functions $ f $ |
| + | and $ g $ |
| + | are such that $ f = O (g) $ |
| + | and $ g = O (f ) $ |
| + | as $ x \rightarrow x _ {0} $, |
| + | then they are called functions of the same order as $ x \rightarrow x _ {0} $. |
| + | For instance, if two functions $ \alpha , \beta $ |
| + | are such that $ \alpha (x) \neq 0 $, |
| + | $ \beta (x) \neq 0 $ |
| + | if $ x \neq x _ {0} $ |
| + | and if the limit |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006032.png" /></td> </tr></table>
| + | $$ |
| + | \lim\limits _ {x \rightarrow x _ {0} } \ |
| | | |
− | exists, then they are of the same order as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006033.png" />.
| + | \frac{\alpha (x) }{\beta (x) } |
| + | = c \neq 0 |
| + | $$ |
| | | |
− | Two functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006035.png" /> are called equivalent (asymptotically equal) as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006036.png" /> (written as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006037.png" />) if in some neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006038.png" />, except maybe the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006039.png" /> itself, a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006040.png" /> is defined such that
| + | exists, then they are of the same order as $ x \rightarrow x _ {0} $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006041.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
| + | Two functions $ f $ |
| + | and $ g $ |
| + | are called equivalent (asymptotically equal) as $ x \rightarrow x _ {0} $( |
| + | written as $ f \sim g $) |
| + | if in some neighbourhood of $ x _ {0} $, |
| + | except maybe the point $ x _ {0} $ |
| + | itself, a function $ \phi $ |
| + | is defined such that |
| | | |
− | The condition of equivalency of two functions is symmetric, i.e. if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006042.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006043.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006044.png" />, and transitive, i.e. if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006046.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006047.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006048.png" />. If in some neighbourhood of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006049.png" /> the inequalities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006050.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006051.png" /> hold for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006052.png" />, then (*) is equivalent to any of the following conditions:
| + | $$ \tag{* } |
| + | f = \phi g \ \textrm{ and } \ \lim\limits _ {x \rightarrow x _ {0} } \phi (x) = 1 . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006053.png" /></td> </tr></table>
| + | The condition of equivalency of two functions is symmetric, i.e. if $ f \sim g $, |
| + | then $ g \sim f $ |
| + | as $ x \rightarrow x _ {0} $, |
| + | and transitive, i.e. if $ f \sim g $ |
| + | and $ g \sim h $, |
| + | then $ f \sim h $ |
| + | as $ x \rightarrow x _ {0} $. |
| + | If in some neighbourhood of the point $ x _ {0} $ |
| + | the inequalities $ f (x) \neq 0 $, |
| + | $ g (x) \neq 0 $ |
| + | hold for $ x \neq x _ {0} $, |
| + | then (*) is equivalent to any of the following conditions: |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006054.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006055.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006056.png" /> is said to be an infinitely-small function with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006057.png" />, and one writes
| + | $$ |
| + | \lim\limits _ {x \rightarrow x _ {0} } \ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006058.png" /></td> </tr></table>
| + | \frac{f (x) }{g (x) } |
| + | = 1 ,\ \ |
| + | \lim\limits _ {x \rightarrow x _ {0} } |
| + | \frac{g (x) }{f (x) } |
| + | = 1 . |
| + | $$ |
| | | |
− | (read "a is of lower order than f" ). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006059.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006060.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006061.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006062.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006063.png" /> is an infinitely-small function for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006064.png" />, one says that the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006065.png" /> is an infinitely-small function of higher order than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006066.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006067.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006068.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006069.png" /> are quantities of the same order, then one says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006070.png" /> is a quantity of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006072.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006073.png" />. All formulas of the above type are called asymptotic estimates; they are especially interesting for infinitely-small and infinitely-large functions.
| + | If $ \alpha = \epsilon f $ |
| + | where $ \lim\limits _ {x \rightarrow x _ {0} } \epsilon (x) = 0 $, |
| + | then $ \alpha $ |
| + | is said to be an infinitely-small function with respect to $ f $, |
| + | and one writes |
| | | |
− | Examples: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006074.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006075.png" />); <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006076.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006077.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006078.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006079.png" /> any positive numbers); <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006080.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006081.png" />).
| + | $$ |
| + | \alpha = o (f ) \ \textrm{ as } x \rightarrow x _ {0} $$ |
| | | |
− | Here are some properties of the symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006082.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006083.png" />:
| + | (read "a is of lower order than f" ). If $ f (x) \neq 0 $ |
| + | when $ x \neq x _ {0} $, |
| + | then $ \alpha = o (f ) $ |
| + | if $ \lim\limits _ {x \rightarrow x _ {0} } \alpha (x) / f(x) = 0 $. |
| + | If $ f $ |
| + | is an infinitely-small function for $ x \rightarrow x _ {0} $, |
| + | one says that the function $ \alpha = o (f ) $ |
| + | is an infinitely-small function of higher order than $ f $ |
| + | as $ x \rightarrow x _ {0} $. |
| + | If $ g $ |
| + | and $ [ f ] ^ {k} $ |
| + | are quantities of the same order, then one says that $ g $ |
| + | is a quantity of order $ k $ |
| + | with respect to $ f $. |
| + | All formulas of the above type are called asymptotic estimates; they are especially interesting for infinitely-small and infinitely-large functions. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006084.png" /></td> </tr></table>
| + | Examples: $ e ^ {x} - 1 = o (1) $( |
| + | $ x \rightarrow 0 $); |
| + | $ \cos x ^ {2} = O (1) $; |
| + | $ ( \mathop{\rm ln} x ) ^ \alpha = o ( x ^ \beta ) $( |
| + | $ x \rightarrow \infty $; |
| + | $ \alpha , \beta $ |
| + | any positive numbers); $ [ x / \sin ( 1 / x ) ] = O ( x ^ {2} ) $( |
| + | $ x \rightarrow \infty $). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006085.png" /></td> </tr></table>
| + | Here are some properties of the symbols $ o $ |
| + | and $ O $: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006086.png" /></td> </tr></table>
| + | $$ |
| + | O ( \alpha f ) = O (f) \ ( \alpha \textrm{ a non-zero constant } ); |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006087.png" /></td> </tr></table>
| + | $$ |
| + | O ( O (f ) ) = O (f ) ; |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006088.png" /></td> </tr></table>
| + | $$ |
| + | O (f ) O (g) = O ( f \cdot g ) ; |
| + | $$ |
| | | |
− | if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006089.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006090.png" />, then
| + | $$ |
| + | O ( o (f ) ) = o ( O (f ) ) = o (f ) ; |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006091.png" /></td> </tr></table>
| + | $$ |
| + | O (f ) o (g) = o ( f \cdot g ) ; |
| + | $$ |
| | | |
− | Formulas containing the symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006092.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006093.png" /> are read only from the left to the right; however, this does not exclude that certain formulas remain true when read from the right to the left. The symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006094.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006095.png" /> for functions of a complex variable and for functions of several variables are introduced in the same way as it was done above for functions of one real variable.
| + | if $ 0 < x < x _ {0} $ |
| + | and $ f = O (g) $, |
| + | then |
| | | |
| + | $$ |
| + | \int\limits _ {x _ {0} } ^ { x } f (y) dy = O |
| + | \left ( \int\limits _ {x _ {0} } ^ { x } | g (y) | dy \right ) \ \ |
| + | ( x \rightarrow x _ {0} ) . |
| + | $$ |
| | | |
| + | Formulas containing the symbols $ o $ |
| + | and $ O $ |
| + | are read only from the left to the right; however, this does not exclude that certain formulas remain true when read from the right to the left. The symbols $ o $ |
| + | and $ O $ |
| + | for functions of a complex variable and for functions of several variables are introduced in the same way as it was done above for functions of one real variable. |
| | | |
| ====Comments==== | | ====Comments==== |
− | The symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o07006098.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070060/o070060101.png" /> ( "little oh symbollittle oh" and "big Oh symbolbig Oh" ) were introduced by E. Landau. | + | The symbols $ o $ |
| + | and $ O $( |
| + | "little oh symbol. little oh" and "big Oh symbol, big Oh" ) were introduced by E. Landau. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.H. Hardy, "A course of pure mathematics" , Cambridge Univ. Press (1975)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Landau, "Grundlagen der Analysis" , Akad. Verlagsgesellschaft (1930)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.H. Hardy, "A course of pure mathematics" , Cambridge Univ. Press (1975)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Landau, "Grundlagen der Analysis" , Akad. Verlagsgesellschaft (1930)</TD></TR></table> |
comparison of functions, $ O $-
$ o $
relations, asymptotic relations
A notion arising in studies on the behaviour of a function with respect to another function in a neighbourhood of some point (this point may be infinite).
Let $ x _ {0} $
be a limit point of a set $ E $.
If for two functions $ f $
and $ g $
there exist constants $ c > 0 $
and $ \delta > 0 $
such that $ | f (x) | \leq c | g (x) | $
for $ | x - x _ {0} | < \delta $,
$ x \neq x _ {0} $,
then $ f $
is called a function which is bounded in comparison with $ g $
in some deleted neighbourhood of $ x _ {0} $,
and this is written as
$$
f (x) = O ( g (x) ) \ \textrm{ as } x \rightarrow x _ {0} $$
(read "f is of the order of g" ); $ x \rightarrow x _ {0} $
means that the considered property holds only in some deleted neighbourhood of $ x _ {0} $.
This definition can be naturally used when $ x \rightarrow \infty $,
$ x \rightarrow - \infty $.
If two functions $ f $
and $ g $
are such that $ f = O (g) $
and $ g = O (f ) $
as $ x \rightarrow x _ {0} $,
then they are called functions of the same order as $ x \rightarrow x _ {0} $.
For instance, if two functions $ \alpha , \beta $
are such that $ \alpha (x) \neq 0 $,
$ \beta (x) \neq 0 $
if $ x \neq x _ {0} $
and if the limit
$$
\lim\limits _ {x \rightarrow x _ {0} } \
\frac{\alpha (x) }{\beta (x) }
= c \neq 0
$$
exists, then they are of the same order as $ x \rightarrow x _ {0} $.
Two functions $ f $
and $ g $
are called equivalent (asymptotically equal) as $ x \rightarrow x _ {0} $(
written as $ f \sim g $)
if in some neighbourhood of $ x _ {0} $,
except maybe the point $ x _ {0} $
itself, a function $ \phi $
is defined such that
$$ \tag{* }
f = \phi g \ \textrm{ and } \ \lim\limits _ {x \rightarrow x _ {0} } \phi (x) = 1 .
$$
The condition of equivalency of two functions is symmetric, i.e. if $ f \sim g $,
then $ g \sim f $
as $ x \rightarrow x _ {0} $,
and transitive, i.e. if $ f \sim g $
and $ g \sim h $,
then $ f \sim h $
as $ x \rightarrow x _ {0} $.
If in some neighbourhood of the point $ x _ {0} $
the inequalities $ f (x) \neq 0 $,
$ g (x) \neq 0 $
hold for $ x \neq x _ {0} $,
then (*) is equivalent to any of the following conditions:
$$
\lim\limits _ {x \rightarrow x _ {0} } \
\frac{f (x) }{g (x) }
= 1 ,\ \
\lim\limits _ {x \rightarrow x _ {0} }
\frac{g (x) }{f (x) }
= 1 .
$$
If $ \alpha = \epsilon f $
where $ \lim\limits _ {x \rightarrow x _ {0} } \epsilon (x) = 0 $,
then $ \alpha $
is said to be an infinitely-small function with respect to $ f $,
and one writes
$$
\alpha = o (f ) \ \textrm{ as } x \rightarrow x _ {0} $$
(read "a is of lower order than f" ). If $ f (x) \neq 0 $
when $ x \neq x _ {0} $,
then $ \alpha = o (f ) $
if $ \lim\limits _ {x \rightarrow x _ {0} } \alpha (x) / f(x) = 0 $.
If $ f $
is an infinitely-small function for $ x \rightarrow x _ {0} $,
one says that the function $ \alpha = o (f ) $
is an infinitely-small function of higher order than $ f $
as $ x \rightarrow x _ {0} $.
If $ g $
and $ [ f ] ^ {k} $
are quantities of the same order, then one says that $ g $
is a quantity of order $ k $
with respect to $ f $.
All formulas of the above type are called asymptotic estimates; they are especially interesting for infinitely-small and infinitely-large functions.
Examples: $ e ^ {x} - 1 = o (1) $(
$ x \rightarrow 0 $);
$ \cos x ^ {2} = O (1) $;
$ ( \mathop{\rm ln} x ) ^ \alpha = o ( x ^ \beta ) $(
$ x \rightarrow \infty $;
$ \alpha , \beta $
any positive numbers); $ [ x / \sin ( 1 / x ) ] = O ( x ^ {2} ) $(
$ x \rightarrow \infty $).
Here are some properties of the symbols $ o $
and $ O $:
$$
O ( \alpha f ) = O (f) \ ( \alpha \textrm{ a non-zero constant } );
$$
$$
O ( O (f ) ) = O (f ) ;
$$
$$
O (f ) O (g) = O ( f \cdot g ) ;
$$
$$
O ( o (f ) ) = o ( O (f ) ) = o (f ) ;
$$
$$
O (f ) o (g) = o ( f \cdot g ) ;
$$
if $ 0 < x < x _ {0} $
and $ f = O (g) $,
then
$$
\int\limits _ {x _ {0} } ^ { x } f (y) dy = O
\left ( \int\limits _ {x _ {0} } ^ { x } | g (y) | dy \right ) \ \
( x \rightarrow x _ {0} ) .
$$
Formulas containing the symbols $ o $
and $ O $
are read only from the left to the right; however, this does not exclude that certain formulas remain true when read from the right to the left. The symbols $ o $
and $ O $
for functions of a complex variable and for functions of several variables are introduced in the same way as it was done above for functions of one real variable.
The symbols $ o $
and $ O $(
"little oh symbol. little oh" and "big Oh symbol, big Oh" ) were introduced by E. Landau.
References
[a1] | G.H. Hardy, "A course of pure mathematics" , Cambridge Univ. Press (1975) |
[a2] | E. Landau, "Grundlagen der Analysis" , Akad. Verlagsgesellschaft (1930) |