|
|
(3 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
| + | {{TEX|done}} |
| The same as a [[Flag|flag]]. | | The same as a [[Flag|flag]]. |
| | | |
− | A flag structure of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f0405702.png" /> on an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f0405703.png" />-dimensional manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f0405704.png" /> is a field of flags <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f0405705.png" /> of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f0405706.png" /> defined by subspaces | + | A flag structure of type $\nu=(n_1,\dotsc,n_k)$ on an $n$-dimensional manifold $M$ is a field of flags $F_x$ of type $\nu$ defined by subspaces |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f0405707.png" /></td> </tr></table>
| + | $$V_1(x),\dotsc,V_k(x)$$ |
| | | |
− | of the tangent spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f0405708.png" />, depending smoothly on the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f0405709.png" />. In other words, a flag structure of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057010.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057011.png" /> is a smooth section of the bundle of flags of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057012.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057013.png" />, the typical fibre of which at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057014.png" /> is the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057015.png" />. A flag structure of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057016.png" /> is called complete or full. A flag structure of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057017.png" /> on a manifold is a [[G-structure(2)|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057018.png" />-structure]], where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057019.png" /> is the group of all linear transformations of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057020.png" />-dimensional vector space preserving some flag of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057021.png" />. This <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057022.png" />-structure is of infinite type. The automorphism group of a flag structure is, generally speaking, infinite-dimensional. The Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057023.png" /> of infinitesimal automorphisms of a flag structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057024.png" /> has a chain of ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057025.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057026.png" /> consists of the vector fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057027.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057028.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057029.png" />. | + | of the tangent spaces $M_x$, depending smoothly on the point $x\in M$. In other words, a flag structure of type $\nu$ on $M$ is a smooth section of the bundle of flags of type $\nu$ on $M$, the typical fibre of which at the point $x\in M$ is the variety $F_\nu(M_x)$. A flag structure of type $\nu_0=(1,\dotsc,n-1)$ is called complete or full. A flag structure of type $\nu$ on a manifold is a [[G-structure|$G$-structure]], where $G$ is the group of all linear transformations of the $n$-dimensional vector space preserving some flag of type $\nu$. This $G$-structure is of infinite type. The automorphism group of a flag structure is, generally speaking, infinite-dimensional. The Lie algebra $L$ of infinitesimal automorphisms of a flag structure on $M$ has a chain of ideals $L_1\subset\dotsb\subset L_k$, where $L_i$ consists of the vector fields $X\in L$ such that $X(x)\in V_i(x)$ for all $x\in M$. |
| | | |
− | An important special case of flag structures are those of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057030.png" />, or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057032.png" />-dimensional distributions (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057034.png" />). | + | An important special case of flag structures are those of type $(n_1)$, or $n_1$-dimensional distributions (here $k=1$, $0<n_1<n$). |
| | | |
− | A flag structure of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057035.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057036.png" /> is called locally flat, or integrable, if every point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057037.png" /> has a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057038.png" /> and a coordinate system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057039.png" /> in it such that the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057040.png" /> is spanned by the vectors | + | A flag structure of type $\nu$ on $M$ is called locally flat, or integrable, if every point $p\in M$ has a neighbourhood $U_p$ and a coordinate system $(x^1,\dotsc,x^n)$ in it such that the subspace $V_i(x)$ is spanned by the vectors |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057041.png" /></td> </tr></table>
| + | $$\frac{\partial}{\partial x^1},\dotsc,\frac{\partial}{\partial x^{n_i}}$$ |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057042.png" /> and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057043.png" />. This means that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057044.png" /> has a collection of foliations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057045.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057046.png" /> the flag <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057047.png" /> is defined by a collection of subspaces of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057048.png" /> tangent to the leaves of these foliations passing through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057049.png" />. A flag structure is locally flat if and only if for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057050.png" /> the distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057051.png" /> is involutory, that is, if for any two vector fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057053.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057054.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057055.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057056.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057057.png" />, it is true that | + | for all $x\in U_p$ and all $i=1,\dotsc,k$. This means that $U_p$ has a collection of foliations $S_1,\dotsc,S_k$ such that for all $x\in U_p$ the flag $F_x$ is defined by a collection of subspaces of $M_x$ tangent to the leaves of these foliations passing through $x$. A flag structure is locally flat if and only if for every $i=1,\dotsc,k$ the distribution $V_i(x)$ is involutory, that is, if for any two vector fields $X$ and $Y$ on $M$ such that $X(x)\in V_i(x)$ and $Y(x)\in V_i(x)$ for all $x\in M$, it is true that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057058.png" /></td> </tr></table>
| + | $$[X,Y](x)\in V_i(x),$$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057059.png" /> is the [[Lie bracket|Lie bracket]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057060.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057061.png" />. | + | where $[X,Y]$ is the [[Lie bracket|Lie bracket]] of $X$ and $Y$. |
| | | |
− | The existence of global (everywhere-defined) flag structures on a manifold imposes fairly-strong restrictions on its topological structure. For example, there is a line field, that is, a flag structure of type , on a simply-connected compact manifold if and only if its Euler characteristic vanishes. There is a complete flag structure on a simply-connected manifold if and only if it is completely parallelizable, that is, if its tangent bundle is trivial. If there is a parallel flag structure of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057062.png" /> that is invariant relative to parallel displacements on a complete simply-connected <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057063.png" />-dimensional Riemannian manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057064.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057065.png" /> is isomorphic to the direct product of simply-connected Riemannian manifolds of dimensions | + | The existence of global (everywhere-defined) flag structures on a manifold imposes fairly-strong restrictions on its topological structure. For example, there is a line field, that is, a flag structure of type , on a simply-connected compact manifold if and only if its Euler characteristic vanishes. There is a complete flag structure on a simply-connected manifold if and only if it is completely parallelizable, that is, if its tangent bundle is trivial. If there is a parallel flag structure of type $(n_1,\dotsc,n_k)$ that is invariant relative to parallel displacements on a complete simply-connected $n$-dimensional Riemannian manifold $M$, then $M$ is isomorphic to the direct product of simply-connected Riemannian manifolds of dimensions |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057066.png" /></td> </tr></table>
| + | $$n_1,n_2-n_1,\dotsc,n_k-n_{k-1},n-n_k.$$ |
| | | |
− | A transitive group of diffeomorphisms of a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057067.png" /> leaves some flag structure of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057068.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057069.png" /> invariant if and only if its linear isotropy group preserves some flag of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057070.png" /> in the tangent space to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057071.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057072.png" /> is a closed subgroup of a Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057073.png" /> such that the restriction to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057074.png" /> of the adjoint representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057075.png" /> gives a triangular linear group, then there is an invariant complete flag structure on the homogeneous space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057076.png" />, and also an invariant flag structure of every other type. | + | A transitive group of diffeomorphisms of a manifold $M$ leaves some flag structure of type $\nu$ on $M$ invariant if and only if its linear isotropy group preserves some flag of type $\nu$ in the tangent space to $M$. In particular, if $H$ is a closed subgroup of a Lie group $G$ such that the restriction to $H$ of the adjoint representation of $G$ gives a triangular linear group, then there is an invariant complete flag structure on the homogeneous space $G/H$, and also an invariant flag structure of every other type. |
| | | |
| A theory of deformations of flag structures on compact manifolds has been developed [[#References|[4]]]. | | A theory of deformations of flag structures on compact manifolds has been developed [[#References|[4]]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Borel, "Linear algebraic groups" , Benjamin (1969)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.E. Humphreys, "Linear algebraic groups" , Springer (1975)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.N. Bernshtein, I.M. Gel'fand, S.I. Gel'fand, "Schubert cells and cohomology of the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040570/f04057077.png" />" ''Russian Math. Surveys'' , '''28''' : 3 (1973) pp. 1–26 ''Uspekhi Mat. Nauk'' , '''28''' : 3 (1973) pp. 3–26</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> K. Kodaira, D.C. Spencer, "Multifoliate structures" ''Ann. of Math.'' , '''74''' (1961) pp. 52–100</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Borel, "Linear algebraic groups" , Benjamin (1969) {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.E. Humphreys, "Linear algebraic groups" , Springer (1975) {{MR|0396773}} {{ZBL|0325.20039}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.N. Bernshtein, I.M. Gel'fand, S.I. Gel'fand, "Schubert cells and cohomology of the spaces $G/P$" ''Russian Math. Surveys'' , '''28''' : 3 (1973) pp. 1–26 ''Uspekhi Mat. Nauk'' , '''28''' : 3 (1973) pp. 3–26 {{MR|0686277}} {{ZBL|}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> K. Kodaira, D.C. Spencer, "Multifoliate structures" ''Ann. of Math.'' , '''74''' (1961) pp. 52–100 {{MR|0148086}} {{ZBL|0123.16401}} </TD></TR></table> |
The same as a flag.
A flag structure of type $\nu=(n_1,\dotsc,n_k)$ on an $n$-dimensional manifold $M$ is a field of flags $F_x$ of type $\nu$ defined by subspaces
$$V_1(x),\dotsc,V_k(x)$$
of the tangent spaces $M_x$, depending smoothly on the point $x\in M$. In other words, a flag structure of type $\nu$ on $M$ is a smooth section of the bundle of flags of type $\nu$ on $M$, the typical fibre of which at the point $x\in M$ is the variety $F_\nu(M_x)$. A flag structure of type $\nu_0=(1,\dotsc,n-1)$ is called complete or full. A flag structure of type $\nu$ on a manifold is a $G$-structure, where $G$ is the group of all linear transformations of the $n$-dimensional vector space preserving some flag of type $\nu$. This $G$-structure is of infinite type. The automorphism group of a flag structure is, generally speaking, infinite-dimensional. The Lie algebra $L$ of infinitesimal automorphisms of a flag structure on $M$ has a chain of ideals $L_1\subset\dotsb\subset L_k$, where $L_i$ consists of the vector fields $X\in L$ such that $X(x)\in V_i(x)$ for all $x\in M$.
An important special case of flag structures are those of type $(n_1)$, or $n_1$-dimensional distributions (here $k=1$, $0<n_1<n$).
A flag structure of type $\nu$ on $M$ is called locally flat, or integrable, if every point $p\in M$ has a neighbourhood $U_p$ and a coordinate system $(x^1,\dotsc,x^n)$ in it such that the subspace $V_i(x)$ is spanned by the vectors
$$\frac{\partial}{\partial x^1},\dotsc,\frac{\partial}{\partial x^{n_i}}$$
for all $x\in U_p$ and all $i=1,\dotsc,k$. This means that $U_p$ has a collection of foliations $S_1,\dotsc,S_k$ such that for all $x\in U_p$ the flag $F_x$ is defined by a collection of subspaces of $M_x$ tangent to the leaves of these foliations passing through $x$. A flag structure is locally flat if and only if for every $i=1,\dotsc,k$ the distribution $V_i(x)$ is involutory, that is, if for any two vector fields $X$ and $Y$ on $M$ such that $X(x)\in V_i(x)$ and $Y(x)\in V_i(x)$ for all $x\in M$, it is true that
$$[X,Y](x)\in V_i(x),$$
where $[X,Y]$ is the Lie bracket of $X$ and $Y$.
The existence of global (everywhere-defined) flag structures on a manifold imposes fairly-strong restrictions on its topological structure. For example, there is a line field, that is, a flag structure of type , on a simply-connected compact manifold if and only if its Euler characteristic vanishes. There is a complete flag structure on a simply-connected manifold if and only if it is completely parallelizable, that is, if its tangent bundle is trivial. If there is a parallel flag structure of type $(n_1,\dotsc,n_k)$ that is invariant relative to parallel displacements on a complete simply-connected $n$-dimensional Riemannian manifold $M$, then $M$ is isomorphic to the direct product of simply-connected Riemannian manifolds of dimensions
$$n_1,n_2-n_1,\dotsc,n_k-n_{k-1},n-n_k.$$
A transitive group of diffeomorphisms of a manifold $M$ leaves some flag structure of type $\nu$ on $M$ invariant if and only if its linear isotropy group preserves some flag of type $\nu$ in the tangent space to $M$. In particular, if $H$ is a closed subgroup of a Lie group $G$ such that the restriction to $H$ of the adjoint representation of $G$ gives a triangular linear group, then there is an invariant complete flag structure on the homogeneous space $G/H$, and also an invariant flag structure of every other type.
A theory of deformations of flag structures on compact manifolds has been developed [4].
References
[1] | A. Borel, "Linear algebraic groups" , Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201 |
[2] | J.E. Humphreys, "Linear algebraic groups" , Springer (1975) MR0396773 Zbl 0325.20039 |
[3] | I.N. Bernshtein, I.M. Gel'fand, S.I. Gel'fand, "Schubert cells and cohomology of the spaces $G/P$" Russian Math. Surveys , 28 : 3 (1973) pp. 1–26 Uspekhi Mat. Nauk , 28 : 3 (1973) pp. 3–26 MR0686277 |
[4] | K. Kodaira, D.C. Spencer, "Multifoliate structures" Ann. of Math. , 74 (1961) pp. 52–100 MR0148086 Zbl 0123.16401 |