Difference between revisions of "Harmonic polynomial"
(TeX) |
m (dots) |
||
Line 1: | Line 1: | ||
{{TEX|done}} | {{TEX|done}} | ||
− | A polynomial with $x_1,\ | + | A polynomial with $x_1,\dotsc,x_n$ as variables that satisfies the [[Laplace equation|Laplace equation]]. Any harmonic polynomial may be represented as the sum of homogeneous harmonic polynomials. If $n=2$, there are only two linearly independent homogeneous harmonic polynomials of degree $m$ — for example, the real and the imaginary part of the expression $(x_1+ix_2)^m$. If $n=3$, the number of linearly independent homogeneous polynomials of degree $m$ is $2m+1$. In the general case — $n\geq2$ — the number of linearly independent homogeneous harmonic polynomials of degree $m$ is |
$$K_n^m-K_n^{m-2},\quad m\geq2,$$ | $$K_n^m-K_n^{m-2},\quad m\geq2,$$ | ||
Line 6: | Line 6: | ||
where | where | ||
− | $$K_n^m=\frac{n(n+1)\ | + | $$K_n^m=\frac{n(n+1)\dotsm(n+m-1)}{m!}$$ |
is the number of permutations of $n$ objects taken $m$ at a time with $m$ repetitions. The homogeneous harmonic polynomials, $V_m(x)$, are also known as [[Spherical functions|spherical functions]] (in particular if $n=3$). If $n=3$, one may write, in spherical coordinates | is the number of permutations of $n$ objects taken $m$ at a time with $m$ repetitions. The homogeneous harmonic polynomials, $V_m(x)$, are also known as [[Spherical functions|spherical functions]] (in particular if $n=3$). If $n=3$, one may write, in spherical coordinates | ||
Line 23: | Line 23: | ||
$$\sum_{k=1}^NA_k\sin(\omega_kx+\phi_k)$$ | $$\sum_{k=1}^NA_k\sin(\omega_kx+\phi_k)$$ | ||
− | for a given natural number $N$, non-negative $A_k$, and real $\omega_k$, $\phi_k$, $k=1,\ | + | for a given natural number $N$, non-negative $A_k$, and real $\omega_k$, $\phi_k$, $k=1,\dotsc,N$. Complex-valued harmonic polynomials can be represented in the form |
$$\sum_{k=-m}^nc_ke^{i\omega_kx}$$ | $$\sum_{k=-m}^nc_ke^{i\omega_kx}$$ | ||
− | where $n$ and $m$ are natural numbers, $\omega_k$ is real and the $c_k$, $k=-m,-m+1,\ | + | where $n$ and $m$ are natural numbers, $\omega_k$ is real and the $c_k$, $k=-m,-m+1,\dotsc,n$, are complex. Harmonic polynomials are the simplest almost-periodic functions (cf. [[Almost-periodic function|Almost-periodic function]]). |
Latest revision as of 13:05, 14 February 2020
A polynomial with $x_1,\dotsc,x_n$ as variables that satisfies the Laplace equation. Any harmonic polynomial may be represented as the sum of homogeneous harmonic polynomials. If $n=2$, there are only two linearly independent homogeneous harmonic polynomials of degree $m$ — for example, the real and the imaginary part of the expression $(x_1+ix_2)^m$. If $n=3$, the number of linearly independent homogeneous polynomials of degree $m$ is $2m+1$. In the general case — $n\geq2$ — the number of linearly independent homogeneous harmonic polynomials of degree $m$ is
$$K_n^m-K_n^{m-2},\quad m\geq2,$$
where
$$K_n^m=\frac{n(n+1)\dotsm(n+m-1)}{m!}$$
is the number of permutations of $n$ objects taken $m$ at a time with $m$ repetitions. The homogeneous harmonic polynomials, $V_m(x)$, are also known as spherical functions (in particular if $n=3$). If $n=3$, one may write, in spherical coordinates
$$V_m(x)=r^mY_m(\theta,\phi),$$
where $r=\sqrt{x_1^2+x_2^2+x_3^2}$ and $Y_m(\theta,\phi)$ is a spherical function of degree $m$.
References
[1] | S.L. Sobolev, "Partial differential equations of mathematical physics" , Pergamon (1964) (Translated from Russian) MR0178220 Zbl 0123.06508 |
[2] | A.N. [A.N. Tikhonov] Tichonoff, A.A. Samarskii, "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian) MR104888 |
[3] | M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959) MR0106366 Zbl 0084.30903 |
E.D. Solomentsev
A finite linear combination of harmonics. Real-valued harmonic polynomials can be represented in the form
$$\sum_{k=1}^NA_k\sin(\omega_kx+\phi_k)$$
for a given natural number $N$, non-negative $A_k$, and real $\omega_k$, $\phi_k$, $k=1,\dotsc,N$. Complex-valued harmonic polynomials can be represented in the form
$$\sum_{k=-m}^nc_ke^{i\omega_kx}$$
where $n$ and $m$ are natural numbers, $\omega_k$ is real and the $c_k$, $k=-m,-m+1,\dotsc,n$, are complex. Harmonic polynomials are the simplest almost-periodic functions (cf. Almost-periodic function).
Harmonic polynomial. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Harmonic_polynomial&oldid=32574