Namespaces
Variants
Actions

Difference between revisions of "Vitali theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (link)
m (tex done)
Line 1: Line 1:
 +
{{TEX|done}}
 +
 
Vitali's covering theorem. If a system of closed sets is a Vitali covering (see below) of a set A\subset\mathbb R^n, it is possible to extract from \mathcal F an at most countable sequence of pairwise disjoint sets \{F_i\}, i=1,2,\dots, such that
 
Vitali's covering theorem. If a system of closed sets \mathcal F is a Vitali covering (see below) of a set A\subset\mathbb R^n, it is possible to extract from \mathcal F an at most countable sequence of pairwise disjoint sets \{F_i\}, i=1,2,\dots, such that
 
\begin{equation}
 
\begin{equation}
Line 22: Line 24:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G. Vitali,  "Sui gruppi di punti e sulle funzioni di variabili reali"  ''Atti Accad. Sci. Torino'' , '''43'''  (1908)  pp. 75–92  {{MR|}}  {{ZBL|39.0101.05}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Saks,  "Theory of the integral" , Hafner  (1952)  (Translated from French)  {{MR|0167578}} {{ZBL|1196.28001}} {{ZBL|0017.30004}}  {{ZBL|63.0183.05}} </TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G. Vitali,  "Sui gruppi di punti e sulle funzioni di variabili reali"  ''Atti Accad. Sci. Torino'' , '''43'''  (1908)  pp. 75–92  {{MR|}}  {{ZBL|39.0101.05}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Saks,  "Theory of the integral" , Hafner  (1952)  (Translated from French)  {{MR|0167578}} {{ZBL|1196.28001}} {{ZBL|0017.30004}}  {{ZBL|63.0183.05}} </TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678033.png" />, Vitali's covering theorem is a main ingredient in the proof of the Lebesgue theorem that a monotone function has a finite derivative almost everywhere [[#References|[a2]]].
+
For $  n =1 $,  
 +
Vitali's covering theorem is a main ingredient in the proof of the Lebesgue theorem that a monotone function has a finite derivative almost everywhere [[#References|[a2]]].
  
There is another theorem that goes by the name Vitali convergence theorem. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678034.png" /> be a [[Measure space|measure space]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678036.png" /> a sequence in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678037.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678038.png" /> an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678039.png" />-measurable function which is finite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678040.png" />-almost-everywhere and such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678041.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678042.png" />-almost-everywhere. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678044.png" /> if and only if: 1) for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678045.png" /> there is a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678046.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678048.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678049.png" />; and 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678050.png" /> uniformly in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678051.png" />. See [[#References|[a2]]].
+
There is another theorem that goes by the name Vitali convergence theorem. Let   (X,\  {\mathcal A} ,\  \mu )
 +
be a [[Measure space|measure space]], $  1 \leq p < \infty $,  
 +
$  (f _{n} ) _{n=1} ^ \infty  $
 +
a sequence in   L _{p} (X) ,  
 +
and   f
 +
an   {\mathcal A} -
 +
measurable function which is finite   \mu -
 +
almost-everywhere and such that   f _{n} \rightarrow f
 +
  \mu -
 +
almost-everywhere. Then   f \in L _{p} (X)
 +
and $  \| f - f _{n} \| _{p} \rightarrow 0 $
 +
if and only if: 1) for each $  \epsilon > 0 $
 +
there is a set   A _ \epsilon  \in {\mathcal A}
 +
such that $  \mu (A _ \epsilon  ) < \infty $
 +
and $  \int _{ {A _ \epsilon}} | f _{n} | ^{p} \  d \mu < \epsilon $
 +
for all   n \in \mathbf N ;  
 +
and 2) $  \lim\limits _{ {\mu (E) \rightarrow 0}} \  \int _{E} | f _{n} | ^{p} \  d \mu = 0 $
 +
uniformly in   n .  
 +
See [[#References|[a2]]].
  
At least two other useful theorems bear Vitali's name. The Vitali theorem generalizing the Lebesgue's dominated convergence theorem for what is called an equi-integrable or uniformly integrable family of functions. There is also the Vitali–Hahn–Saks theorem, which asserts that a [[pointwise limit]] of a sequence of (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678052.png" />-additive) measures on a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678053.png" />-field is still a (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678054.png" />-additive) measure.
+
At least two other useful theorems bear Vitali's name. The Vitali theorem generalizing the Lebesgue's dominated convergence theorem for what is called an equi-integrable or uniformly integrable family of functions. There is also the Vitali–Hahn–Saks theorem, which asserts that a [[pointwise limit]] of a sequence of (   \sigma -
 +
additive) measures on a   \sigma -
 +
field is still a (   \sigma -
 +
additive) measure.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H.L. Royden, [[Royden, "Real analysis"|"Real analysis"]], Macmillan  (1968)  pp. Chapt. 5</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E. Hewitt,  K.R. Stromberg,  "Real and abstract analysis" , Springer  (1965)  {{MR|0188387}} {{ZBL|0137.03202}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  N. Dunford,  J.T. Schwartz,  "Linear operators. General theory" , '''1''' , Interscience  (1958)  {{MR|0117523}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  H. Federer,  "Geometric measure theory" , Springer  (1969)  pp. 60; 62; 71; 108  {{MR|0257325}} {{ZBL|0176.00801}} </TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H.L. Royden, [[Royden, "Real analysis"|"Real analysis"]], Macmillan  (1968)  pp. Chapt. 5</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E. Hewitt,  K.R. Stromberg,  "Real and abstract analysis" , Springer  (1965)  {{MR|0188387}} {{ZBL|0137.03202}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  N. Dunford,  J.T. Schwartz,  "Linear operators. General theory" , '''1''' , Interscience  (1958)  {{MR|0117523}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  H. Federer,  "Geometric measure theory" , Springer  (1969)  pp. 60; 62; 71; 108  {{MR|0257325}} {{ZBL|0176.00801}} </TD></TR></table>
  
Vitali's theorem on the uniform convergence of a sequence of holomorphic functions. Let a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678055.png" /> of holomorphic functions on a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678056.png" /> of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678057.png" />-plane be uniformly bounded (cf. [[Uniform boundedness|Uniform boundedness]]) and converge on a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678058.png" /> with a limit point in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678059.png" />; the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678060.png" /> will then converge uniformly inside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678061.png" /> towards a holomorphic function, i.e. will converge uniformly on every compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678062.png" />. The theorem was obtained by G. Vitali .
+
Vitali's theorem on the uniform convergence of a sequence of holomorphic functions. Let a sequence   \{ f _{n} (z) \}
 +
of holomorphic functions on a domain   D
 +
of the complex   z -
 +
plane be uniformly bounded (cf. [[Uniform boundedness|Uniform boundedness]]) and converge on a set   E
 +
with a limit point in   D ;  
 +
the sequence   \{ f _{n} (z) \}
 +
will then converge uniformly inside   D
 +
towards a holomorphic function, i.e. will converge uniformly on every compact set   K \subset D .  
 +
The theorem was obtained by G. Vitali .
  
The [[Compactness principle|compactness principle]] makes it possible to strengthen Vitali's theorem by replacing the condition of uniform boundedness on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678063.png" /> by the condition of uniform boundedness on every compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678064.png" />. There also exist Vitali theorems for normal families (cf. [[Normal family|Normal family]]) of meromorphic functions, for families of quasi-analytic functions and for families of holomorphic functions of several complex variables; in the last case, however, additional limitations must be imposed on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678065.png" />, for example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678066.png" /> must contain interior points in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096780/v09678067.png" /> [[#References|[3]]], [[#References|[4]]].
+
The [[Compactness principle|compactness principle]] makes it possible to strengthen Vitali's theorem by replacing the condition of uniform boundedness on   D
 +
by the condition of uniform boundedness on every compact set   K \subset D .  
 +
There also exist Vitali theorems for normal families (cf. [[Normal family|Normal family]]) of meromorphic functions, for families of quasi-analytic functions and for families of holomorphic functions of several complex variables; in the last case, however, additional limitations must be imposed on the set   E \subset D \subset \mathbf C ^{n} ,  
 +
for example,   E
 +
must contain interior points in   \mathbf C ^{n} [[#References|[3]]], [[#References|[4]]].
  
 
====References====
 
====References====
Line 45: Line 79:
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C. Carathéodory,  "Theory of functions of a complex variable" , '''1''' , Chelsea, reprint  (1978)  (Translated from German)  {{MR|1570711}} {{MR|0064861}} {{MR|0060009}} {{ZBL|0056.06703}} {{ZBL|0055.30301}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.B. Conway,  "Functions of one complex variable" , Springer  (1973)  {{MR|0447532}} {{ZBL|0277.30001}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  R. Remmert,  "Funktionentheorie" , '''II''' , Springer  (1991)  {{MR|1150243}} {{ZBL|0748.30002}} </TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C. Carathéodory,  "Theory of functions of a complex variable" , '''1''' , Chelsea, reprint  (1978)  (Translated from German)  {{MR|1570711}} {{MR|0064861}} {{MR|0060009}} {{ZBL|0056.06703}} {{ZBL|0055.30301}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.B. Conway,  "Functions of one complex variable" , Springer  (1973)  {{MR|0447532}} {{ZBL|0277.30001}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  R. Remmert,  "Funktionentheorie" , '''II''' , Springer  (1991)  {{MR|1150243}} {{ZBL|0748.30002}} </TD></TR></table>

Revision as of 22:10, 28 January 2020


Vitali's covering theorem. If a system of closed sets \mathcal F is a Vitali covering (see below) of a set A\subset\mathbb R^n, it is possible to extract from \mathcal F an at most countable sequence of pairwise disjoint sets \{F_i\}, i=1,2,\dots, such that \begin{equation} m_e\left[A\setminus\bigcup_{i=1}^{\infty}F_i\right]=0, \end{equation} where m_e is the outer Lebesgue measure in \mathbb R^n.

A Vitali covering of a set A\subset\mathbb R^n is a system \mathcal E of subsets of \mathbb R^n such that for any x\in A there exists a sequence \{E_n\} from \mathcal E satisfying the following conditions: \begin{equation} x\in\bigcap_{n=1}^{\infty}E_n; \end{equation} \begin{equation} \delta_n = \delta(E_n) \to 0\quad \text{ if } n\to\infty, \end{equation} where \delta(E_n) is the diameter of E_n; and \begin{equation} \inf_n\left[\sup\frac{m_e(E_n)}{m(I)}\right]=\alpha>0, \end{equation} where the supremum is taken over all I (cubes with faces parallel to the coordinate planes and containing E_n), this supremum is said to be the regularity parameter of E_n.

The theorem was demonstrated by G. Vitali [1] for the case when \mathcal F consists of cubes with faces parallel to the coordinate planes. Vitali's theorem is valid as stated if \mathcal F is a Vitali covering of the set A and not for a covering in the ordinary sense. This condition must always be satisfied, even if \mathcal F is a system of segments and if to each x\in A there corresponds a sequence \{F_n\} from \mathcal F with centres at x and with diameters tending to zero.

References

[1] G. Vitali, "Sui gruppi di punti e sulle funzioni di variabili reali" Atti Accad. Sci. Torino , 43 (1908) pp. 75–92 Zbl 39.0101.05
[2] S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) MR0167578 Zbl 1196.28001 Zbl 0017.30004 Zbl 63.0183.05

Comments

For n =1 , Vitali's covering theorem is a main ingredient in the proof of the Lebesgue theorem that a monotone function has a finite derivative almost everywhere [a2].

There is another theorem that goes by the name Vitali convergence theorem. Let (X,\ {\mathcal A} ,\ \mu ) be a measure space, 1 \leq p < \infty , (f _{n} ) _{n=1} ^ \infty a sequence in L _{p} (X) , and f an {\mathcal A} - measurable function which is finite \mu - almost-everywhere and such that f _{n} \rightarrow f \mu - almost-everywhere. Then f \in L _{p} (X) and \| f - f _{n} \| _{p} \rightarrow 0 if and only if: 1) for each \epsilon > 0 there is a set A _ \epsilon \in {\mathcal A} such that \mu (A _ \epsilon ) < \infty and \int _{ {A _ \epsilon}} | f _{n} | ^{p} \ d \mu < \epsilon for all n \in \mathbf N ; and 2) \lim\limits _{ {\mu (E) \rightarrow 0}} \ \int _{E} | f _{n} | ^{p} \ d \mu = 0 uniformly in n . See [a2].

At least two other useful theorems bear Vitali's name. The Vitali theorem generalizing the Lebesgue's dominated convergence theorem for what is called an equi-integrable or uniformly integrable family of functions. There is also the Vitali–Hahn–Saks theorem, which asserts that a pointwise limit of a sequence of ( \sigma - additive) measures on a \sigma - field is still a ( \sigma - additive) measure.

References

[a1] H.L. Royden, "Real analysis", Macmillan (1968) pp. Chapt. 5
[a2] E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) MR0188387 Zbl 0137.03202
[a3] N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Interscience (1958) MR0117523
[a4] H. Federer, "Geometric measure theory" , Springer (1969) pp. 60; 62; 71; 108 MR0257325 Zbl 0176.00801

Vitali's theorem on the uniform convergence of a sequence of holomorphic functions. Let a sequence \{ f _{n} (z) \} of holomorphic functions on a domain D of the complex z - plane be uniformly bounded (cf. Uniform boundedness) and converge on a set E with a limit point in D ; the sequence \{ f _{n} (z) \} will then converge uniformly inside D towards a holomorphic function, i.e. will converge uniformly on every compact set K \subset D . The theorem was obtained by G. Vitali .

The compactness principle makes it possible to strengthen Vitali's theorem by replacing the condition of uniform boundedness on D by the condition of uniform boundedness on every compact set K \subset D . There also exist Vitali theorems for normal families (cf. Normal family) of meromorphic functions, for families of quasi-analytic functions and for families of holomorphic functions of several complex variables; in the last case, however, additional limitations must be imposed on the set E \subset D \subset \mathbf C ^{n} , for example, E must contain interior points in \mathbf C ^{n} [3], [4].

References

[1a] G. Vitali, Rend. R. Istor. Lombardo (2) , 36 (1903) pp. 772–774
[1b] G. Vitali, Ann. Mat. Pura Appl. (3) , 10 (1904) pp. 73
[2] A.I. Markushevich, "Theory of functions of a complex variable" , 1 , Chelsea (1977) pp. Chapt.4 (Translated from Russian) MR0444912 Zbl 0357.30002
[3] P. Montel, "Leçons sur les familles normales de fonctions analytiques et leurs applications" , Gauthier-Villars (1927) Zbl 53.0303.02
[4] R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965) MR0180696 Zbl 0141.08601

E.D. Solomentsev

Comments

References

[a1] C. Carathéodory, "Theory of functions of a complex variable" , 1 , Chelsea, reprint (1978) (Translated from German) MR1570711 MR0064861 MR0060009 Zbl 0056.06703 Zbl 0055.30301
[a2] J.B. Conway, "Functions of one complex variable" , Springer (1973) MR0447532 Zbl 0277.30001
[a3] R. Remmert, "Funktionentheorie" , II , Springer (1991) MR1150243 Zbl 0748.30002
How to Cite This Entry:
Vitali theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Vitali_theorem&oldid=40128
This article was adapted from an original article by I.A. Vinogradova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article