|
|
Line 1: |
Line 1: |
− | A [[Principal G-object|principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p0747201.png" />-object]] in the category of algebraic varieties or schemes. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p0747202.png" /> is a [[Scheme|scheme]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p0747203.png" /> is a [[Group scheme|group scheme]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p0747204.png" />, then a principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p0747205.png" />-object in the category of schemes over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p0747206.png" /> is said to be a principal homogeneous space. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p0747207.png" /> is the spectrum of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p0747208.png" /> (cf. [[Spectrum of a ring|Spectrum of a ring]]) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p0747209.png" /> is an algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472010.png" />-group (cf. [[Algebraic group|Algebraic group]]), then a principal homogeneous space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472011.png" /> is an algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472012.png" />-variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472013.png" /> acted upon (from the left) by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472014.png" /> such that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472015.png" /> is replaced by its separable algebraic closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472016.png" />, then each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472017.png" /> defines an isomorphic mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472018.png" /> of the varieties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472020.png" />. A principal homogeneous space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472021.png" /> is trivial if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472022.png" /> is non-empty. The set of classes of isomorphic principal homogeneous spaces over a smooth algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472023.png" /> can be identified with the set of [[Galois cohomology|Galois cohomology]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472024.png" />. In the general case the set of classes of principal homogeneous spaces over an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472025.png" />-group scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472026.png" /> coincides with the set of one-dimensional non-Abelian cohomology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472027.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472028.png" /> is some [[Grothendieck topology|Grothendieck topology]] on the scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472029.png" /> [[#References|[2]]].
| + | {{TEX|done}} |
| | | |
− | Principal homogeneous spaces have been computed in a number of cases. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472030.png" /> is a finite field, then each principal homogeneous space over a connected algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472031.png" />-group is trivial (Lang's theorem). This theorem also holds if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472032.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472033.png" />-adic number field and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472034.png" /> is a simply-connected semi-simple group (Kneser's theorem). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472035.png" /> is a multiplicative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472036.png" />-group scheme, then the set of classes of principal homogeneous spaces over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472037.png" /> becomes identical with the [[Picard group|Picard group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472038.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472039.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472040.png" /> is the spectrum of a field, this group is trivial. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472041.png" /> is an additive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472042.png" />-group scheme, then the set of classes of principal homogeneous spaces over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472043.png" /> becomes identical with the one-dimensional cohomology group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472044.png" /> of the structure sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472045.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472046.png" />. In particular, this set is trivial if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472047.png" /> is an affine scheme. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472048.png" /> is a global field (i.e. an algebraic number field or a field of algebraic functions in one variable), then the study of the set of classes of principal homogeneous spaces over an algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472049.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472050.png" /> is based on the study of the Tate–Shafarevich set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472051.png" />, which consists of the principal homogeneous spaces over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472052.png" /> with rational points in all completions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472053.png" /> with respect to the valuations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472054.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472055.png" /> is an Abelian group over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472056.png" />, then the set of classes of principal homogeneous spaces over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472057.png" /> forms a group (cf. [[Weil–Châtelet group|Weil–Châtelet group]]). | + | A [[Principal G-object|principal $ G $- |
| + | object]] in the category of algebraic varieties or schemes. If $ S $ |
| + | is a [[Scheme|scheme]] and $ \Gamma $ |
| + | is a [[Group scheme|group scheme]] over $ S $, |
| + | then a principal $ G $- |
| + | object in the category of schemes over $ \Gamma $ |
| + | is said to be a principal homogeneous space. If $ S $ |
| + | is the spectrum of a field $ k $( |
| + | cf. [[Spectrum of a ring|Spectrum of a ring]]) and $ \Gamma $ |
| + | is an algebraic $ k $- |
| + | group (cf. [[Algebraic group|Algebraic group]]), then a principal homogeneous space over $ \Gamma $ |
| + | is an algebraic $ k $- |
| + | variety $ V $ |
| + | acted upon (from the left) by $ \Gamma $ |
| + | such that if $ k $ |
| + | is replaced by its separable algebraic closure $ \overline{k} $, |
| + | then each point $ v \in V ( \overline{k} ) $ |
| + | defines an isomorphic mapping $ g \rightarrow gv $ |
| + | of the varieties $ V _{\overline{ {k}} } $ |
| + | and $ \Gamma _{\overline{ {k}} } $. |
| + | A principal homogeneous space $ V $ |
| + | is trivial if and only if $ V(k) $ |
| + | is non-empty. The set of classes of isomorphic principal homogeneous spaces over a smooth algebraic group $ \Gamma $ |
| + | can be identified with the set of [[Galois cohomology|Galois cohomology]] $ H ^{1} (k,\ \Gamma ) $. |
| + | In the general case the set of classes of principal homogeneous spaces over an $ S $- |
| + | group scheme $ \Gamma $ |
| + | coincides with the set of one-dimensional non-Abelian cohomology $ H ^{1} ( S _{T} ,\ \Gamma ) $. |
| + | Here $ S _{T} $ |
| + | is some [[Grothendieck topology|Grothendieck topology]] on the scheme $ S $[[#References|[2]]]. |
| + | |
| + | Principal homogeneous spaces have been computed in a number of cases. If $ k $ |
| + | is a finite field, then each principal homogeneous space over a connected algebraic $ k $- |
| + | group is trivial (Lang's theorem). This theorem also holds if $ k $ |
| + | is a $ p $- |
| + | adic number field and $ \Gamma $ |
| + | is a simply-connected semi-simple group (Kneser's theorem). If $ \Gamma = \Gamma _{m,S} $ |
| + | is a multiplicative $ S $- |
| + | group scheme, then the set of classes of principal homogeneous spaces over $ \Gamma $ |
| + | becomes identical with the [[Picard group|Picard group]] $ \mathop{\rm Pic}\nolimits (S) $ |
| + | of $ S $. |
| + | In particular, if $ S $ |
| + | is the spectrum of a field, this group is trivial. If $ \Gamma = \Gamma _{a,S} $ |
| + | is an additive $ S $- |
| + | group scheme, then the set of classes of principal homogeneous spaces over $ \Gamma $ |
| + | becomes identical with the one-dimensional cohomology group $ H ^{1} (S,\ {\mathcal O} _{S} ) $ |
| + | of the structure sheaf $ {\mathcal O} _{S} $ |
| + | of $ S $. |
| + | In particular, this set is trivial if $ S $ |
| + | is an affine scheme. If $ k $ |
| + | is a global field (i.e. an algebraic number field or a field of algebraic functions in one variable), then the study of the set of classes of principal homogeneous spaces over an algebraic $ k $- |
| + | group $ \Gamma $ |
| + | $\def\Sha{ {\mathop{\amalg\kern-0.30em\amalg}}}$ |
| + | is based on the study of the Tate–Shafarevich set $ \Sha ( \Gamma ) $, |
| + | which consists of the principal homogeneous spaces over $ \Gamma $ |
| + | with rational points in all completions $ k _{V} $ |
| + | with respect to the valuations of $ k $. |
| + | If $ \Gamma $ |
| + | is an Abelian group over the field $ k $, |
| + | then the set of classes of principal homogeneous spaces over $ \Gamma $ |
| + | forms a group (cf. [[Weil–Châtelet group|Weil–Châtelet group]]). |
| | | |
| ====References==== | | ====References==== |
Line 9: |
Line 68: |
| | | |
| ====Comments==== | | ====Comments==== |
− | The notion of a principal homogeneous space is not restricted to algebraic geometry. For instance, it is defined in the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472058.png" />-sets, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472059.png" /> is a group. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472060.png" /> be a finite (profinite, etc.) group. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472061.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472063.png" />-set, i.e. a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472064.png" /> with an action <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472065.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472066.png" /> on it. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472067.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472069.png" />-group, i.e. a group object in the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472070.png" />-sets, which means that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472071.png" /> is a group and that the action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472072.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472073.png" /> is by group automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472074.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472075.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472076.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472077.png" />. One says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472078.png" /> operates compatibly with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472079.png" />-action from the left on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472080.png" /> if there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472081.png" />-action <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472082.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472083.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472084.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472085.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472086.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472087.png" />. A principal homogeneous space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472088.png" /> in this setting is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472089.png" />-set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472090.png" /> on which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472091.png" /> acts compatibly with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472092.png" />-action and such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472093.png" /> there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472094.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472095.png" />. (This is the property to which the word "principal" refers; one also says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472096.png" /> is an affine space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472097.png" />.) In this case there is a natural bijective correspondence between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472098.png" /> and isomorphism classes of principal homogeneous spaces over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472099.png" /> and, in fact, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p074720100.png" /> (for non-Abelian <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p074720101.png" />) is sometimes defined this way. | + | The notion of a principal homogeneous space is not restricted to algebraic geometry. For instance, it is defined in the category of $ G $- |
| + | sets, where $ G $ |
| + | is a group. Let $ G $ |
| + | be a finite (profinite, etc.) group. Let $ E $ |
| + | be a $ G $- |
| + | set, i.e. a set $ E $ |
| + | with an action $ G \times E \rightarrow E $ |
| + | of $ G $ |
| + | on it. Let $ \Gamma $ |
| + | be a $ G $- |
| + | group, i.e. a group object in the category of $ G $- |
| + | sets, which means that $ \Gamma $ |
| + | is a group and that the action of $ G $ |
| + | on $ \Gamma $ |
| + | is by group automorphisms of $ \Gamma $: |
| + | $ (xy) ^ \gamma = x ^ \gamma y ^ \gamma $ |
| + | for $ \gamma \in G $, |
| + | $ x,\ y \in \Gamma $. |
| + | One says that $ \Gamma $ |
| + | operates compatibly with the $ G $- |
| + | action from the left on $ E $ |
| + | if there is a $ \Gamma $- |
| + | action $ \Gamma \times E \rightarrow E $ |
| + | on $ E $ |
| + | such that $ ( \gamma x ) ^{g} = ( \gamma ^{g} )(x ^{g} ) $ |
| + | for $ g \in G $, |
| + | $ \gamma \in \Gamma $, |
| + | $ x \in E $. |
| + | A principal homogeneous space over $ \Gamma $ |
| + | in this setting is a $ G $- |
| + | set $ P $ |
| + | on which $ \Gamma $ |
| + | acts compatibly with the $ G $- |
| + | action and such that for all $ x,\ y \in P $ |
| + | there is a $ \gamma \in \Gamma $ |
| + | such that $ y = \gamma x $. |
| + | (This is the property to which the word "principal" refers; one also says that $ P $ |
| + | is an affine space over $ \Gamma $.) |
| + | In this case there is a natural bijective correspondence between $ H ^{1} (G,\ \Gamma ) $ |
| + | and isomorphism classes of principal homogeneous spaces over $ \Gamma $ |
| + | and, in fact, $ H ^{1} (G,\ \Gamma ) $( |
| + | for non-Abelian $ \Gamma $) |
| + | is sometimes defined this way. |
A principal $ G $-
object in the category of algebraic varieties or schemes. If $ S $
is a scheme and $ \Gamma $
is a group scheme over $ S $,
then a principal $ G $-
object in the category of schemes over $ \Gamma $
is said to be a principal homogeneous space. If $ S $
is the spectrum of a field $ k $(
cf. Spectrum of a ring) and $ \Gamma $
is an algebraic $ k $-
group (cf. Algebraic group), then a principal homogeneous space over $ \Gamma $
is an algebraic $ k $-
variety $ V $
acted upon (from the left) by $ \Gamma $
such that if $ k $
is replaced by its separable algebraic closure $ \overline{k} $,
then each point $ v \in V ( \overline{k} ) $
defines an isomorphic mapping $ g \rightarrow gv $
of the varieties $ V _{\overline{ {k}} } $
and $ \Gamma _{\overline{ {k}} } $.
A principal homogeneous space $ V $
is trivial if and only if $ V(k) $
is non-empty. The set of classes of isomorphic principal homogeneous spaces over a smooth algebraic group $ \Gamma $
can be identified with the set of Galois cohomology $ H ^{1} (k,\ \Gamma ) $.
In the general case the set of classes of principal homogeneous spaces over an $ S $-
group scheme $ \Gamma $
coincides with the set of one-dimensional non-Abelian cohomology $ H ^{1} ( S _{T} ,\ \Gamma ) $.
Here $ S _{T} $
is some Grothendieck topology on the scheme $ S $[2].
Principal homogeneous spaces have been computed in a number of cases. If $ k $
is a finite field, then each principal homogeneous space over a connected algebraic $ k $-
group is trivial (Lang's theorem). This theorem also holds if $ k $
is a $ p $-
adic number field and $ \Gamma $
is a simply-connected semi-simple group (Kneser's theorem). If $ \Gamma = \Gamma _{m,S} $
is a multiplicative $ S $-
group scheme, then the set of classes of principal homogeneous spaces over $ \Gamma $
becomes identical with the Picard group $ \mathop{\rm Pic}\nolimits (S) $
of $ S $.
In particular, if $ S $
is the spectrum of a field, this group is trivial. If $ \Gamma = \Gamma _{a,S} $
is an additive $ S $-
group scheme, then the set of classes of principal homogeneous spaces over $ \Gamma $
becomes identical with the one-dimensional cohomology group $ H ^{1} (S,\ {\mathcal O} _{S} ) $
of the structure sheaf $ {\mathcal O} _{S} $
of $ S $.
In particular, this set is trivial if $ S $
is an affine scheme. If $ k $
is a global field (i.e. an algebraic number field or a field of algebraic functions in one variable), then the study of the set of classes of principal homogeneous spaces over an algebraic $ k $-
group $ \Gamma $
$\def\Sha{ {\mathop{\amalg\kern-0.30em\amalg}}}$
is based on the study of the Tate–Shafarevich set $ \Sha ( \Gamma ) $,
which consists of the principal homogeneous spaces over $ \Gamma $
with rational points in all completions $ k _{V} $
with respect to the valuations of $ k $.
If $ \Gamma $
is an Abelian group over the field $ k $,
then the set of classes of principal homogeneous spaces over $ \Gamma $
forms a group (cf. Weil–Châtelet group).
References
The notion of a principal homogeneous space is not restricted to algebraic geometry. For instance, it is defined in the category of $ G $-
sets, where $ G $
is a group. Let $ G $
be a finite (profinite, etc.) group. Let $ E $
be a $ G $-
set, i.e. a set $ E $
with an action $ G \times E \rightarrow E $
of $ G $
on it. Let $ \Gamma $
be a $ G $-
group, i.e. a group object in the category of $ G $-
sets, which means that $ \Gamma $
is a group and that the action of $ G $
on $ \Gamma $
is by group automorphisms of $ \Gamma $:
$ (xy) ^ \gamma = x ^ \gamma y ^ \gamma $
for $ \gamma \in G $,
$ x,\ y \in \Gamma $.
One says that $ \Gamma $
operates compatibly with the $ G $-
action from the left on $ E $
if there is a $ \Gamma $-
action $ \Gamma \times E \rightarrow E $
on $ E $
such that $ ( \gamma x ) ^{g} = ( \gamma ^{g} )(x ^{g} ) $
for $ g \in G $,
$ \gamma \in \Gamma $,
$ x \in E $.
A principal homogeneous space over $ \Gamma $
in this setting is a $ G $-
set $ P $
on which $ \Gamma $
acts compatibly with the $ G $-
action and such that for all $ x,\ y \in P $
there is a $ \gamma \in \Gamma $
such that $ y = \gamma x $.
(This is the property to which the word "principal" refers; one also says that $ P $
is an affine space over $ \Gamma $.)
In this case there is a natural bijective correspondence between $ H ^{1} (G,\ \Gamma ) $
and isomorphism classes of principal homogeneous spaces over $ \Gamma $
and, in fact, $ H ^{1} (G,\ \Gamma ) $(
for non-Abelian $ \Gamma $)
is sometimes defined this way.