|
|
Line 1: |
Line 1: |
− | ''of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s0866902.png" />'' | + | {{TEX|done}} |
| + | ''of degree $k$'' |
| | | |
− | A restriction of a homogeneous [[Harmonic polynomial|harmonic polynomial]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s0866903.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s0866904.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s0866905.png" /> variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s0866906.png" /> to the unit sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s0866907.png" /> of the Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s0866908.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s0866909.png" />. In particular, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669010.png" />, the spherical harmonics are the classical [[Spherical functions|spherical functions]]. | + | A restriction of a homogeneous [[Harmonic polynomial|harmonic polynomial]] $h^{(k)}(x)$ of degree $k$ in $n$ variables $x=(x_1,\dots,x_n)$ to the unit sphere $S^{n-1}$ of the Euclidean space $E^n$, $n\geq3$. In particular, when $n=3$, the spherical harmonics are the classical [[Spherical functions|spherical functions]]. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669014.png" />. The basic property of spherical harmonics is the property of orthogonality: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669016.png" /> are spherical harmonics of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669018.png" />, respectively, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669019.png" />, then | + | Let $x\in E^n$, $x\neq0$, $r=|x|$, $x'=x/r\in S^{n-1}$. The basic property of spherical harmonics is the property of orthogonality: If $Y^{(k)}(x')$ and $Y^{(l)}(x')$ are spherical harmonics of degree $k$ and $l$, respectively, with $k\neq l$, then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669020.png" /></td> </tr></table>
| + | $$\int\limits_{S^{n-1}}Y^{(k)}(x')Y^{(l)}(x')dx'=0.$$ |
| | | |
− | The simplest spherical harmonics are the zonal spherical harmonics. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669021.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669022.png" />, a zonal spherical harmonic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669023.png" /> exists which is constant on any parallel of the sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669024.png" /> that is orthogonal to the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669025.png" />. The zonal spherical harmonics <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669026.png" /> differ from the [[Legendre polynomials|Legendre polynomials]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669027.png" />, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669028.png" />, or from the [[Ultraspherical polynomials|ultraspherical polynomials]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669029.png" />, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669030.png" />, only by a constant factor: | + | The simplest spherical harmonics are the zonal spherical harmonics. For any $t'\in S^{n-1}$ and any $k>0$, a zonal spherical harmonic $Z_{t'}^{(k)}(x')$ exists which is constant on any parallel of the sphere $S^{n-1}$ that is orthogonal to the vector $t'$. The zonal spherical harmonics $Z_{t'}^{(k)}(x')$ differ from the [[Legendre polynomials|Legendre polynomials]] $P_k^{(\lambda)}$, when $n=3$, or from the [[Ultraspherical polynomials|ultraspherical polynomials]] $P_k^{(\lambda)}$, when $n>3$, only by a constant factor: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669031.png" /></td> </tr></table>
| + | $$Z_{t'}^{(k)}(x')=c(k,n)P_k^{(\lambda)}(x't'),$$ |
| | | |
− | where the polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669032.png" /> are defined, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669033.png" />, by the generating function | + | where the polynomials $P_k^{(\lambda)}$ are defined, when $n\geq3$, by the generating function |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669034.png" /></td> </tr></table>
| + | $$(1-2st+s^2)^{-\lambda}=\sum_{k=0}^\infty P_k^{(\lambda)}(t)s^k,$$ |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669037.png" />. The polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669039.png" /> are orthogonal with weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669040.png" /> and form an orthogonal basis of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669041.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669042.png" /> is a function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669043.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669044.png" />, then there is a unique set of spherical harmonics <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669045.png" /> such that
| + | $0\leq|s|<1$, $|t|=1$, $\lambda=(n-2)/2$. The polynomials $P_k^{(\lambda)}$, $k=0,1,\dots,$ are orthogonal with weight $(1-t^2)^{\lambda-1/2}$ and form an orthogonal basis of the space $L_2([-1,1];(1-t^2)^{\lambda-1/2})$. If $f$ is a function in $L_2(S^{n-1})$ with $\int_{S^{n-1}}f(x')dx'=0$, then there is a unique set of spherical harmonics $Y^{(k)}$ such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669046.png" /></td> </tr></table>
| + | $$f(x')=\sum_{k=1}^\infty Y^{(k)}(x'),$$ |
| | | |
− | where the series converges in the norm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669047.png" />. | + | where the series converges in the norm of $L_2(S^{n-1})$. |
| | | |
− | Expansions in spherical harmonics are largely analogous to expansions in [[Fourier series|Fourier series]], of which they are essentially a generalization. The homogeneous harmonic polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669048.png" /> are sometimes called spatial spherical harmonics. By virtue of the homogeneity | + | Expansions in spherical harmonics are largely analogous to expansions in [[Fourier series|Fourier series]], of which they are essentially a generalization. The homogeneous harmonic polynomials $h^{(k)}(x)$ are sometimes called spatial spherical harmonics. By virtue of the homogeneity |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086690/s08669049.png" /></td> </tr></table>
| + | $$h^{(k)}(x)=|x|^kY^{(k)}(x'),$$ |
| | | |
| spherical harmonics are sometimes also called surface spherical harmonics. | | spherical harmonics are sometimes also called surface spherical harmonics. |
of degree $k$
A restriction of a homogeneous harmonic polynomial $h^{(k)}(x)$ of degree $k$ in $n$ variables $x=(x_1,\dots,x_n)$ to the unit sphere $S^{n-1}$ of the Euclidean space $E^n$, $n\geq3$. In particular, when $n=3$, the spherical harmonics are the classical spherical functions.
Let $x\in E^n$, $x\neq0$, $r=|x|$, $x'=x/r\in S^{n-1}$. The basic property of spherical harmonics is the property of orthogonality: If $Y^{(k)}(x')$ and $Y^{(l)}(x')$ are spherical harmonics of degree $k$ and $l$, respectively, with $k\neq l$, then
$$\int\limits_{S^{n-1}}Y^{(k)}(x')Y^{(l)}(x')dx'=0.$$
The simplest spherical harmonics are the zonal spherical harmonics. For any $t'\in S^{n-1}$ and any $k>0$, a zonal spherical harmonic $Z_{t'}^{(k)}(x')$ exists which is constant on any parallel of the sphere $S^{n-1}$ that is orthogonal to the vector $t'$. The zonal spherical harmonics $Z_{t'}^{(k)}(x')$ differ from the Legendre polynomials $P_k^{(\lambda)}$, when $n=3$, or from the ultraspherical polynomials $P_k^{(\lambda)}$, when $n>3$, only by a constant factor:
$$Z_{t'}^{(k)}(x')=c(k,n)P_k^{(\lambda)}(x't'),$$
where the polynomials $P_k^{(\lambda)}$ are defined, when $n\geq3$, by the generating function
$$(1-2st+s^2)^{-\lambda}=\sum_{k=0}^\infty P_k^{(\lambda)}(t)s^k,$$
$0\leq|s|<1$, $|t|=1$, $\lambda=(n-2)/2$. The polynomials $P_k^{(\lambda)}$, $k=0,1,\dots,$ are orthogonal with weight $(1-t^2)^{\lambda-1/2}$ and form an orthogonal basis of the space $L_2([-1,1];(1-t^2)^{\lambda-1/2})$. If $f$ is a function in $L_2(S^{n-1})$ with $\int_{S^{n-1}}f(x')dx'=0$, then there is a unique set of spherical harmonics $Y^{(k)}$ such that
$$f(x')=\sum_{k=1}^\infty Y^{(k)}(x'),$$
where the series converges in the norm of $L_2(S^{n-1})$.
Expansions in spherical harmonics are largely analogous to expansions in Fourier series, of which they are essentially a generalization. The homogeneous harmonic polynomials $h^{(k)}(x)$ are sometimes called spatial spherical harmonics. By virtue of the homogeneity
$$h^{(k)}(x)=|x|^kY^{(k)}(x'),$$
spherical harmonics are sometimes also called surface spherical harmonics.
References
[1] | P.M. Morse, H. Feshbach, "Methods of theoretical physics" , 1–2 , McGraw-Hill (1953) |
[2] | E.M. Stein, G. Weiss, "Introduction to Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1971) |
References
[a1] | I.M. Gel'fand, R.A. Minlos, Z.Ya. Shapiro, "Representations of the rotation group and the Lorentz group, and their applications" , Macmillan (1963) (Translated from Russian) |
[a2] | N.Ya. Vilenkin, "Special functions and the theory of group representations" , Amer. Math. Soc. (1968) (Translated from Russian) |
[a3] | N.Ya. Vilenkin, A.U. Klimyk, "Special functions, group representations, and integral transforms" , 1 , Kluwer (1991) (Translated from Russian) |