|
|
(5 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
− | A triple system closely related to Jordan algebras. | + | A [[triple system]] closely related to [[Jordan algebra]]s. |
| | | |
− | A triple system is a [[Vector space|vector space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j1300601.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j1300602.png" /> together with a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j1300603.png" />-trilinear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j1300604.png" />, called a triple product and usually denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j1300605.png" /> (sometimes dropping the commas). | + | A triple system is a [[vector space]] $V$ over a field $K$ together with a $K$-[[trilinear mapping]] $V \times V \times V \rightarrow V$, called a ''triple product'' and usually denoted by $\{ \cdot , \cdot , \cdot \}$ (sometimes dropping the commas). |
| | | |
| It is said to be a Jordan triple system if | | It is said to be a Jordan triple system if |
| + | $$ |
| + | \{ u,v,w \} = \{ w,v,u \} \ , |
| + | $$ |
| + | $$ |
| + | \{x,y,\{u,v,w\}\} = \{\{x,y,u\},v,w\} - \{u,\{y,x,v\},w\} + \{u,v,\{x,y,w\}\} |
| + | $$ |
| + | with $x,y,u,v,w \in V$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j1300606.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
| + | From the algebraic viewpoint, a Jordan triple system $(V,\{,,\})$ is a [[Lie triple system]] with respect to the new triple product |
| + | $$ |
| + | [x,y,z] = \{x,y,z\} - \{y,x,z\} \ . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j1300607.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
| + | This implies that all simple Lie algebras over an [[algebraically closed field]] of characteristic zero, except $G_2$, $F_4$ and $E_8$ (cf. also [[Lie algebra]]), can be constructed using the standard embedding Lie algebra associated with a Lie triple system via a Jordan triple system. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j1300608.png" /></td> </tr></table>
| + | From the geometrical viewpoint there is, for example, a correspondence between symmetric $R$-spaces and compact Jordan triple systems [[#References|[a3]]] as well as a correspondence between bounded symmetric domains and Hermitian Jordan triple systems [[#References|[a2]]]. |
− | | |
− | with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j1300609.png" />.
| |
− | | |
− | From the algebraic viewpoint, a Jordan triple system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006010.png" /> is a [[Lie triple system|Lie triple system]] with respect to the new triple product
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006011.png" /></td> </tr></table>
| |
− | | |
− | This implies that all simple Lie algebras over an [[Algebraically closed field|algebraically closed field]] of characteristic zero, except <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006014.png" /> (cf. also [[Lie algebra|Lie algebra]]), can be constructed using the standard embedding Lie algebra associated with a Lie triple system via a Lie triple system.
| |
− | | |
− | From the geometrical viewpoint there is, for example, a correspondence between symmetric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006015.png" />-spaces and compact Jordan triple systems [[#References|[a3]]] as well as a correspondence between bounded symmetric domains and Hermitian Jordan triple systems [[#References|[a2]]]. | |
| | | |
| For superversions of this triple system, see [[#References|[a5]]]. | | For superversions of this triple system, see [[#References|[a5]]]. |
| | | |
| ==Examples.== | | ==Examples.== |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006016.png" /> be an associative algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006017.png" /> (cf. also [[Associative rings and algebras|Associative rings and algebras]]) and set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006018.png" />, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006019.png" />-matrices over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006020.png" />. This vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006021.png" /> is a Jordan triple system with respect to the product | + | Let $D$ be an associative algebra over $K$ (cf. also [[Associative rings and algebras]]) and set $V = M_{p,q}(D)$, the $(p\times q)$-matrices over $D$. This vector space $V$ is a Jordan triple system with respect to the product |
| + | $$ |
| + | \{x,y,z\} = x y^\top z + z y^\top x |
| + | $$ |
| + | where $y^\top$ denotes the [[transpose matrix]] of $y$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006022.png" /></td> </tr></table>
| + | Let $V$ be a vector space over $K$ equipped with a symmetric bilinear form $(\cdot,\cdot)$. Then $V$ is a Jordan triple system with respect to the product |
| + | $$ |
| + | \{x,y,z\} = (x,y) z + (y,z) x - y (z,x) \ . |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006023.png" /> denotes the [[transpose matrix]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006024.png" />.
| + | Let $J$ be a commutative [[Jordan algebra]]. Then $J$ is a Jordan triple system with respect to the product |
| + | $$ |
| + | \{x,y,z\} = x(yz) + (xy)z - y(xz) \ . |
| + | $$ |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006025.png" /> be a vector space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006026.png" /> equipped with a symmetric bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006027.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006028.png" /> is a Jordan triple system with respect to the product
| + | Note that a triple system in this sense is completely different from, e.g., the combinatorial notion of a [[Steiner triple system]]. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006029.png" /></td> </tr></table> | + | ====References==== |
| + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Jacobson, "Lie and Jordan triple systems" ''Amer. J. Math.'' , '''71''' (1949) pp. 149–170</TD></TR> |
| + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Kaup, "Hermitian Jordan triple systems and the automorphisms of bounded symmetric domains" , ''Non Associative Algebra and Its Applications (Oviedo, 1993)'' , Kluwer Acad. Publ. (1994) pp. 204–214</TD></TR> |
| + | <TR><TD valign="top">[a3]</TD> <TD valign="top"> O. Loos, "Jordan triple systems, $R$-symmetric spaces, and bounded symmetric domains" ''Bull. Amer. Math. Soc.'' , '''77''' (1971) pp. 558–561</TD></TR> |
| + | <TR><TD valign="top">[a4]</TD> <TD valign="top"> E. Neher, "Jordan triple systems by the grid approach" , ''Lecture Notes in Mathematics'' , '''1280''' , Springer (1987) {{ZBL|0621.17001}}</TD></TR> |
| + | <TR><TD valign="top">[a5]</TD> <TD valign="top"> S. Okubo, N. Kamiya, "Jordan–Lie super algebra and Jordan–Lie triple system" ''J. Algebra'' , '''198''' : 2 (1997) pp. 388–411</TD></TR> |
| + | </table> |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006030.png" /> be a commutative [[Jordan algebra|Jordan algebra]]. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006031.png" /> is a Jordan triple system with respect to the product
| + | {{TEX|done}} |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006032.png" /></td> </tr></table>
| |
− | | |
− | Note that a triple system in this sense is completely different from, e.g., the combinatorial notion of a Steiner triple system (cf. also [[Steiner system|Steiner system]]).
| |
− | | |
− | ====References====
| |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Jacobson, "Lie and Jordan triple systems" ''Amer. J. Math.'' , '''71''' (1949) pp. 149–170</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Kaup, "Hermitian Jordan triple systems and the automorphisms of bounded symmetric domains" , ''Non Associative Algebra and Its Applications (Oviedo, 1993)'' , Kluwer Acad. Publ. (1994) pp. 204–214</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> O. Loos, "Jordan triple systems, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130060/j13006033.png" />-symmetric spaces, and bounded symmetric domains" ''Bull. Amer. Math. Soc.'' , '''77''' (1971) pp. 558–561</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E. Nehr, "Jordan triple systems by the graid approach" , ''Lecture Notes in Mathematics'' , '''1280''' , Springer (1987)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> S. Okubo, N. Kamiya, "Jordan–Lie super algebra and Jordan–Lie triple system" ''J. Algebra'' , '''198''' : 2 (1997) pp. 388–411</TD></TR></table>
| |
A triple system closely related to Jordan algebras.
A triple system is a vector space $V$ over a field $K$ together with a $K$-trilinear mapping $V \times V \times V \rightarrow V$, called a triple product and usually denoted by $\{ \cdot , \cdot , \cdot \}$ (sometimes dropping the commas).
It is said to be a Jordan triple system if
$$
\{ u,v,w \} = \{ w,v,u \} \ ,
$$
$$
\{x,y,\{u,v,w\}\} = \{\{x,y,u\},v,w\} - \{u,\{y,x,v\},w\} + \{u,v,\{x,y,w\}\}
$$
with $x,y,u,v,w \in V$.
From the algebraic viewpoint, a Jordan triple system $(V,\{,,\})$ is a Lie triple system with respect to the new triple product
$$
[x,y,z] = \{x,y,z\} - \{y,x,z\} \ .
$$
This implies that all simple Lie algebras over an algebraically closed field of characteristic zero, except $G_2$, $F_4$ and $E_8$ (cf. also Lie algebra), can be constructed using the standard embedding Lie algebra associated with a Lie triple system via a Jordan triple system.
From the geometrical viewpoint there is, for example, a correspondence between symmetric $R$-spaces and compact Jordan triple systems [a3] as well as a correspondence between bounded symmetric domains and Hermitian Jordan triple systems [a2].
For superversions of this triple system, see [a5].
Examples.
Let $D$ be an associative algebra over $K$ (cf. also Associative rings and algebras) and set $V = M_{p,q}(D)$, the $(p\times q)$-matrices over $D$. This vector space $V$ is a Jordan triple system with respect to the product
$$
\{x,y,z\} = x y^\top z + z y^\top x
$$
where $y^\top$ denotes the transpose matrix of $y$.
Let $V$ be a vector space over $K$ equipped with a symmetric bilinear form $(\cdot,\cdot)$. Then $V$ is a Jordan triple system with respect to the product
$$
\{x,y,z\} = (x,y) z + (y,z) x - y (z,x) \ .
$$
Let $J$ be a commutative Jordan algebra. Then $J$ is a Jordan triple system with respect to the product
$$
\{x,y,z\} = x(yz) + (xy)z - y(xz) \ .
$$
Note that a triple system in this sense is completely different from, e.g., the combinatorial notion of a Steiner triple system.
References
[a1] | N. Jacobson, "Lie and Jordan triple systems" Amer. J. Math. , 71 (1949) pp. 149–170 |
[a2] | W. Kaup, "Hermitian Jordan triple systems and the automorphisms of bounded symmetric domains" , Non Associative Algebra and Its Applications (Oviedo, 1993) , Kluwer Acad. Publ. (1994) pp. 204–214 |
[a3] | O. Loos, "Jordan triple systems, $R$-symmetric spaces, and bounded symmetric domains" Bull. Amer. Math. Soc. , 77 (1971) pp. 558–561 |
[a4] | E. Neher, "Jordan triple systems by the grid approach" , Lecture Notes in Mathematics , 1280 , Springer (1987) Zbl 0621.17001 |
[a5] | S. Okubo, N. Kamiya, "Jordan–Lie super algebra and Jordan–Lie triple system" J. Algebra , 198 : 2 (1997) pp. 388–411 |