Namespaces
Variants
Actions

Difference between pages "Banach space of analytic functions with infinite-dimensional domains" and "Vector algebra"

From Encyclopedia of Mathematics
(Difference between pages)
Jump to: navigation, search
(Importing text file)
 
(MSC 15A72)
 
Line 1: Line 1:
The primary interest here is in the interplay between function theory on infinite-dimensional domains, geometric properties of Banach spaces, and Banach and Fréchet algebras. Throughout, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200501.png" /> will denote a complex [[Banach space|Banach space]] with open unit ball <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200502.png" />.
+
{{MSC|15A72}}
  
==Definition and basic properties.==
+
A branch of [[Vector calculus|vector calculus]] dealing with the simplest operations involving (free) vectors (cf. [[Vector|Vector]]). These include linear operations, viz. addition of vectors and multiplication of a vector by a number.
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200503.png" /> denote the space of complex-valued <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200505.png" />-homogeneous polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200506.png" />, i.e. functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200507.png" /> to which is associated a continuous <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200508.png" />-linear function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200509.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005010.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005011.png" />. Each such polynomial is associated with a unique symmetric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005012.png" />-linear form via the polarization formula. For an open subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005013.png" />, one says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005014.png" /> is holomorphic, or analytic, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005015.png" /> has a complex [[Fréchet derivative|Fréchet derivative]] at each point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005016.png" /> (cf. also [[Algebra of functions|Algebra of functions]]). Equivalently, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005017.png" /> is holomorphic if at each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005018.png" /> there is a sequence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005019.png" />-homogeneous polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005020.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005021.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005022.png" /> in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005023.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005024.png" />, then the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005025.png" /> of holomorphic functions from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005026.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005027.png" /> always contains as a proper subset the subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005028.png" /> of holomorphic functions which are bounded on bounded subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005029.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005030.png" />. The latter space is a [[Fréchet algebra|Fréchet algebra]] with metric determined by countably many such subsets, whereas there are a number of natural topologies on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005031.png" />.
 
  
The natural analogues of the classical Banach algebras of analytic functions are the following:
+
The sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v0963501.png" /> of two vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v0963502.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v0963503.png" /> is the vector drawn from the origin of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v0963504.png" /> to the end of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v0963505.png" /> if the end of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v0963506.png" /> and the origin of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v0963507.png" /> coincide. The operation of vector addition has the following properties:
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005032.png" />;
+
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v0963508.png" /> (commutativity);
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005033.png" />
+
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v0963509.png" /> (associativity);
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005034.png" /></td> </tr></table>
+
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635010.png" /> (existence of a zero-element);
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005035.png" />
+
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635011.png" /> (existence of an inverse element).
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005036.png" /></td> </tr></table>
+
Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635012.png" /> is the zero vector, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635013.png" /> is the vector opposite to the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635014.png" /> (its inverse). The difference <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635015.png" /> of two vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635017.png" /> is the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635018.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635019.png" />.
  
All are Banach algebras with identity when endowed with the supremum norm (cf. also [[Banach algebra|Banach algebra]]).
+
The product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635020.png" /> of a vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635021.png" /> by a number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635022.png" /> is, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635024.png" />, the vector whose modulus equals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635025.png" /> and whose direction is that of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635026.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635027.png" />, and that of the inverse of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635028.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635029.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635030.png" /> or (and) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635031.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635032.png" />. The operation of multiplication of a vector by a number has the properties:
  
==Results and problems.==
+
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635033.png" /> (distributivity with respect to vector addition);
For any of the above algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005037.png" /> of analytic functions, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005038.png" /> denote the set of homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005039.png" />. Since the Michael problem has an affirmative solution [[#References|[a5]]], every homomorphism is automatically continuous. For each such <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005040.png" />, define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005041.png" /> (noting that, always, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005042.png" />). Basic topics of interest here are the relation between the  "fibres"  <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005044.png" />, and the relation between the geometry of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005045.png" /> and of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005046.png" />.
 
  
The spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005047.png" /> displays very different behaviour in the infinite-dimensional setting, in comparison with the finite-dimensional situation. As an illustration, every element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005048.png" /> corresponds to a homomorphism on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005049.png" />. Indeed, for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005050.png" /> there is a linear extension mapping from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005051.png" />. Applying this mapping to the [[Taylor series|Taylor series]] of a holomorphic function yields a multiplicative linear extension operator, mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005052.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005053.png" />; similar results hold for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005054.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005055.png" />. For example, each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005056.png" /> yields an element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005057.png" /> via <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005058.png" />. A complete description of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005059.png" /> is unknown (1998) for general <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005060.png" />, although it is not difficult to see that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005061.png" />. The question of whether the fourth dual of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005062.png" /> also provides points of the spectrum is connected with [[Arens regularity|Arens regularity]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005063.png" /> [[#References|[a7]]]. In any case, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005064.png" /> can be made into a [[Semi-group|semi-group]] with identity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005065.png" />; the commutativity of this semi-group is related, once again, to Arens regularity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005066.png" /> [[#References|[a6]]].
+
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635034.png" /> (distributivity with respect to addition of numbers);
  
It is natural to look for analytic structure in the spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005067.png" />. In fact, every fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005068.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005069.png" /> contains a copy of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005070.png" />. In many situations, e.g. when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005071.png" /> is super-reflexive (cf., also [[Reflexive space|Reflexive space]]), there is an analytic embedding of the unit ball of a non-separable [[Hilbert space|Hilbert space]] into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005072.png" />. Further information has been obtained by J. Farmer [[#References|[a8]]], who has studied analytic structure in fibres in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005073.png" />-spaces. However, note that there is a peak set (cf. also [[Algebra of functions|Algebra of functions]]) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005074.png" /> which is contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005075.png" />.
+
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635035.png" /> (associativity);
  
There has also been recent (1998) interest in the following areas:
+
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635036.png" /> (multiplication by one).
  
reflexivity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005076.png" />;
+
The set of all free vectors of a space with the induced operations of addition and multiplication by a number forms a [[Vector space|vector space]] (a linear space). Below  "vector" means free vector, or equivalently, element of a given vector space.
  
algebras of weakly continuous holomorphic functions; and
+
An important concept in vector algebra is that of linear dependence of vectors. Vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635037.png" /> are said to be linearly dependent if there exist numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635038.png" />, at least one of which is non-zero, such that the equation
  
Banach-algebra-valued holomorphic mappings.
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635039.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
 +
 
 +
is valid. For two vectors to be linearly dependent it is necessary and sufficient that they are collinear; for three vectors to be linearly dependent it is necessary and sufficient that they are coplanar. If one of the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635040.png" /> is zero, the vectors are linearly dependent. The vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635041.png" /> are said to be linearly independent if it follows from (1) that the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635042.png" /> are equal to zero. At most two, respectively three, linearly independent vectors exist in a plane, respectively three-dimensional space.
 +
 
 +
A set of three (two) linearly independent vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635043.png" /> of three-dimensional space (a plane), taken in a certain order, forms a basis. Any vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635044.png" /> can be uniquely represented as the sum
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635045.png" /></td> </tr></table>
 +
 
 +
The numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635046.png" /> are said to be the coordinates (components) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635047.png" /> in the given basis; this is written as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635048.png" />.
 +
 
 +
Two vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635050.png" /> are equal if and only if their coordinates in the same basis are equal. A necessary and sufficient condition for two vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635051.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635052.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635053.png" />, to be collinear is proportionality of their corresponding coordinates: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635055.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635056.png" />. A necessary and sufficient condition for three vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635057.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635058.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635059.png" /> to be coplanar is the equality
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635060.png" /></td> </tr></table>
 +
 
 +
Linear operations on vectors can be reduced to linear operations on coordinates. The coordinates of the sum of two vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635061.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635062.png" /> are equal to the sums of the corresponding coordinates: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635063.png" />. The coordinates of the product of the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635064.png" /> by a number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635065.png" /> are equal to the products of the coordinates of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635066.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635067.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635068.png" />.
 +
 
 +
The scalar product (or [[Inner product|inner product]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635069.png" /> of two non-zero vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635070.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635071.png" /> is the product of their moduli by the cosine of the angle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635072.png" /> between them:
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635073.png" /></td> </tr></table>
 +
 
 +
In this context, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635074.png" /> is understood as the angle between the vectors that does not exceeding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635075.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635076.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635077.png" />, their scalar product is defined as zero. The scalar product has the following properties:
 +
 
 +
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635078.png" /> (commutativity);
 +
 
 +
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635079.png" /> (distributivity with respect to vector addition);
 +
 
 +
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635080.png" /> (associativity with respect to multiplication by a number);
 +
 
 +
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635081.png" /> only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635082.png" /> and/or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635083.png" />, or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635084.png" />.
 +
 
 +
Scalar vector products are often calculated using orthogonal Cartesian coordinates, i.e. vector coordinates in a basis consisting of mutually perpendicular unit vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635085.png" /> (an orthonormal basis). The scalar product of two vectors
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635086.png" /></td> </tr></table>
 +
 
 +
defined in an orthonormal basis, is calculated by the formula
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635087.png" /></td> </tr></table>
 +
 
 +
The cosine of the angle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635088.png" /> between two non-zero vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635089.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635090.png" /> may be calculated by the formula
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635091.png" /></td> </tr></table>
 +
 
 +
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635092.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635093.png" />.
 +
 
 +
The cosines of the angles formed by the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635094.png" /> with the basis vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635095.png" /> are said to be the direction cosines of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635096.png" />:
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635097.png" /></td> </tr></table>
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635098.png" /></td> </tr></table>
 +
 
 +
The direction cosines have the following property:
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635099.png" /></td> </tr></table>
 +
 
 +
A straight line with a unit vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350100.png" /> chosen on it, which specifies the positive direction on the straight line, is said to be an axis. The projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350101.png" /> of a vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350102.png" /> onto the axis is the directed segment on the axis whose algebraic value is equal to the scalar product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350103.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350104.png" />. Projections are additive:
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350105.png" /></td> </tr></table>
 +
 
 +
and homogeneous:
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350106.png" /></td> </tr></table>
 +
 
 +
Each coordinate of a vector in an orthonormal basis is equal to the projection of this vector on the axis defined by the respective basis vector.
 +
 
 +
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/v096350a.gif" />
 +
 
 +
Figure: v096350a
 +
 
 +
Left and right vector triples are distinguished in space. A triple of non-coplanar vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350107.png" /> is said to be right if, to the observer at the common vector origin, the movement <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350108.png" />, in that order, appears to be clockwise. If it appears to be counterclockwise, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350109.png" /> is a left triple. The direction in space of the right (left) vector triples may be represented by stretching out the thumb, index finger and middle finger of the right (left) hand, as shown in the figure. All right (left) vector triples are said to be identically directed. In what follows, the vector triple of basis vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350110.png" /> will be assumed to be a right triple.
 +
 
 +
Let the direction of positive rotation (from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350111.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350112.png" />) be given on a plane. Then the pseudo-scalar product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350113.png" /> of two non-zero vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350114.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350115.png" /> is defined as the product of their lengths (moduli) by the sine of the angle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350116.png" /> of positive rotation from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350117.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350118.png" />:
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350119.png" /></td> </tr></table>
 +
 
 +
By definition, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350120.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350121.png" /> is zero, their pseudo-scalar product is set equal to zero. The pseudo-scalar product has the following properties:
 +
 
 +
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350122.png" /> (anti-commutativity);
 +
 
 +
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350123.png" /> (distributivity with respect to vector addition);
 +
 
 +
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350124.png" /> (associativity with respect to multiplication by a number);
 +
 
 +
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350125.png" /> only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350126.png" /> and/or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350127.png" />, or if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350128.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350129.png" /> are collinear.
 +
 
 +
If, in an orthonormal basis, the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350130.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350131.png" /> have coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350132.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350133.png" />, then
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350134.png" /></td> </tr></table>
 +
 
 +
The vector product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350135.png" /> of two non-zero non-collinear vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350136.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350137.png" /> is the vector whose modulus is equal to the product of the moduli by the sine of the angle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350138.png" /> between them, which is perpendicular to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350139.png" /> and to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350140.png" /> and is so directed that the vector triple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350141.png" /> is a right triple:
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350142.png" /></td> </tr></table>
 +
 
 +
This product is defined as zero if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350143.png" /> and/or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350144.png" />, or if the two vectors are collinear. The vector product has the following properties:
 +
 
 +
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350145.png" /> (anti-commutativity);
 +
 
 +
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350146.png" /> (distributivity with respect to vector addition);
 +
 
 +
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350147.png" /> (associativity with respect to multiplication by a number);
 +
 
 +
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350148.png" /> only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350149.png" /> and/or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350150.png" />, or if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350151.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350152.png" /> are collinear.
 +
 
 +
If the coordinates of two vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350153.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350154.png" /> in an orthonormal basis are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350155.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350156.png" />, then
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350157.png" /></td> </tr></table>
 +
 
 +
The mixed product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350158.png" /> of three vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350159.png" /> is the scalar product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350160.png" /> and the vector product of the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350161.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350162.png" />:
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350163.png" /></td> </tr></table>
 +
 
 +
The mixed product has the following properties:
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350164.png" /></td> </tr></table>
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350165.png" /></td> </tr></table>
 +
 
 +
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350166.png" /> only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350167.png" /> and/or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350168.png" /> and/or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350169.png" />, or if the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350170.png" /> are coplanar;
 +
 
 +
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350171.png" /> if the vector triple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350172.png" /> is a right triple; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350173.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350174.png" /> is a left triple.
 +
 
 +
The modulus of the mixed product is equal to the volume of the parallelepipedon constructed on the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350175.png" />. If, in an orthonormal basis, the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350176.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350177.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350178.png" /> have coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350179.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350180.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350181.png" />, then
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350182.png" /></td> </tr></table>
 +
 
 +
The double vector product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350183.png" /> of three vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350184.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350185.png" />.
 +
 
 +
The following formulas are used in calculating double vector products:
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350186.png" /></td> </tr></table>
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350187.png" /></td> </tr></table>
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350188.png" /></td> </tr></table>
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v096350189.png" /></td> </tr></table>
 +
 
 +
====References====
 +
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.S. Aleksandrov,  "Lectures on analytical geometry" , Moscow  (1968)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.V. Efimov,  "A short course of analytical geometry" , Moscow  (1967)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.A. Il'in,  E.G. Poznyak,  "Analytical geometry" , MIR  (1984)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.V. Pogorelov,  "Analytical geometry" , Moscow  (1968)  (In Russian)</TD></TR></table>
 +
 
 +
 
 +
 
 +
====Comments====
  
Basic references on holomorphic functions in infinite dimensions are [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]]; a recent (1998) very helpful source, with an extensive bibliography, is [[#References|[a4]]].
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Dineen,  "Complex analysis in localy convex spaces" , North-Holland  (1981)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  S. Dineen,  "Complex analysis on infinite dimensional spaces" , Springer  (1999)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J. Mujica,  "Complex analysis in Banach spaces" , North-Holland  (1986)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  T. Gamelin,  "Analytic functions on Banach spaces" , ''Complex Potential Theory (Montreal 1993)'' , ''NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.'' , '''439''' , Kluwer Acad. Publ.  (1994) pp. 187–233</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  B. Stensones,  "A proof of the Michael conjecture"  ''preprint''  (1999)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  R. Aron,  B. Cole,  T. Gamelin,  "Spectra of algebras of analytic functions on a Banach space"  ''J. Reine Angew. Math.'' , '''415'''  (1991)  pp. 51–93</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  R. Aron,  P. Galindo,  D. Garcia,  M. Maestre,  "Regularity and algebras of analytic functions in infinite dimensions" ''Trans. Amer. Math. Soc.'' , '''384''' :  2  (1996)  pp. 543–559</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  J. Farmer,  "Fibers over the sphere of a uniformly convex Banach space"  ''Michigan Math. J.'' , '''45''' :  2 (1998) pp. 211–226</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.R. Halmos,  "Finite-dimensional vector spaces" , v. Nostrand (1958)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R. Capildeo,  "Vector algebra and mechanics" , Addison-Wesley (1968)</TD></TR></table>

Revision as of 08:11, 14 January 2018

2020 Mathematics Subject Classification: Primary: 15A72 [MSN][ZBL]

A branch of vector calculus dealing with the simplest operations involving (free) vectors (cf. Vector). These include linear operations, viz. addition of vectors and multiplication of a vector by a number.

The sum of two vectors and is the vector drawn from the origin of to the end of if the end of and the origin of coincide. The operation of vector addition has the following properties:

(commutativity);

(associativity);

(existence of a zero-element);

(existence of an inverse element).

Here is the zero vector, and is the vector opposite to the vector (its inverse). The difference of two vectors and is the vector for which .

The product of a vector by a number is, if , , the vector whose modulus equals and whose direction is that of if , and that of the inverse of if . If or (and) , then . The operation of multiplication of a vector by a number has the properties:

(distributivity with respect to vector addition);

(distributivity with respect to addition of numbers);

(associativity);

(multiplication by one).

The set of all free vectors of a space with the induced operations of addition and multiplication by a number forms a vector space (a linear space). Below "vector" means free vector, or equivalently, element of a given vector space.

An important concept in vector algebra is that of linear dependence of vectors. Vectors are said to be linearly dependent if there exist numbers , at least one of which is non-zero, such that the equation

(1)

is valid. For two vectors to be linearly dependent it is necessary and sufficient that they are collinear; for three vectors to be linearly dependent it is necessary and sufficient that they are coplanar. If one of the vectors is zero, the vectors are linearly dependent. The vectors are said to be linearly independent if it follows from (1) that the numbers are equal to zero. At most two, respectively three, linearly independent vectors exist in a plane, respectively three-dimensional space.

A set of three (two) linearly independent vectors of three-dimensional space (a plane), taken in a certain order, forms a basis. Any vector can be uniquely represented as the sum

The numbers are said to be the coordinates (components) of in the given basis; this is written as .

Two vectors and are equal if and only if their coordinates in the same basis are equal. A necessary and sufficient condition for two vectors and , , to be collinear is proportionality of their corresponding coordinates: , , . A necessary and sufficient condition for three vectors , and to be coplanar is the equality

Linear operations on vectors can be reduced to linear operations on coordinates. The coordinates of the sum of two vectors and are equal to the sums of the corresponding coordinates: . The coordinates of the product of the vector by a number are equal to the products of the coordinates of by : .

The scalar product (or inner product) of two non-zero vectors and is the product of their moduli by the cosine of the angle between them:

In this context, is understood as the angle between the vectors that does not exceeding . If or , their scalar product is defined as zero. The scalar product has the following properties:

(commutativity);

(distributivity with respect to vector addition);

(associativity with respect to multiplication by a number);

only if and/or , or .

Scalar vector products are often calculated using orthogonal Cartesian coordinates, i.e. vector coordinates in a basis consisting of mutually perpendicular unit vectors (an orthonormal basis). The scalar product of two vectors

defined in an orthonormal basis, is calculated by the formula

The cosine of the angle between two non-zero vectors and may be calculated by the formula

where and .

The cosines of the angles formed by the vector with the basis vectors are said to be the direction cosines of :

The direction cosines have the following property:

A straight line with a unit vector chosen on it, which specifies the positive direction on the straight line, is said to be an axis. The projection of a vector onto the axis is the directed segment on the axis whose algebraic value is equal to the scalar product of and . Projections are additive:

and homogeneous:

Each coordinate of a vector in an orthonormal basis is equal to the projection of this vector on the axis defined by the respective basis vector.

Figure: v096350a

Left and right vector triples are distinguished in space. A triple of non-coplanar vectors is said to be right if, to the observer at the common vector origin, the movement , in that order, appears to be clockwise. If it appears to be counterclockwise, is a left triple. The direction in space of the right (left) vector triples may be represented by stretching out the thumb, index finger and middle finger of the right (left) hand, as shown in the figure. All right (left) vector triples are said to be identically directed. In what follows, the vector triple of basis vectors will be assumed to be a right triple.

Let the direction of positive rotation (from to ) be given on a plane. Then the pseudo-scalar product of two non-zero vectors and is defined as the product of their lengths (moduli) by the sine of the angle of positive rotation from to :

By definition, if or is zero, their pseudo-scalar product is set equal to zero. The pseudo-scalar product has the following properties:

(anti-commutativity);

(distributivity with respect to vector addition);

(associativity with respect to multiplication by a number);

only if and/or , or if and are collinear.

If, in an orthonormal basis, the vectors and have coordinates and , then

The vector product of two non-zero non-collinear vectors and is the vector whose modulus is equal to the product of the moduli by the sine of the angle between them, which is perpendicular to and to and is so directed that the vector triple is a right triple:

This product is defined as zero if and/or , or if the two vectors are collinear. The vector product has the following properties:

(anti-commutativity);

(distributivity with respect to vector addition);

(associativity with respect to multiplication by a number);

only if and/or , or if and are collinear.

If the coordinates of two vectors and in an orthonormal basis are and , then

The mixed product of three vectors is the scalar product of and the vector product of the vectors and :

The mixed product has the following properties:

only if and/or and/or , or if the vectors are coplanar;

if the vector triple is a right triple; if is a left triple.

The modulus of the mixed product is equal to the volume of the parallelepipedon constructed on the vectors . If, in an orthonormal basis, the vectors , and have coordinates , and , then

The double vector product of three vectors is .

The following formulas are used in calculating double vector products:

References

[1] P.S. Aleksandrov, "Lectures on analytical geometry" , Moscow (1968) (In Russian)
[2] N.V. Efimov, "A short course of analytical geometry" , Moscow (1967) (In Russian)
[3] V.A. Il'in, E.G. Poznyak, "Analytical geometry" , MIR (1984) (Translated from Russian)
[4] A.V. Pogorelov, "Analytical geometry" , Moscow (1968) (In Russian)


Comments

References

[a1] P.R. Halmos, "Finite-dimensional vector spaces" , v. Nostrand (1958)
[a2] R. Capildeo, "Vector algebra and mechanics" , Addison-Wesley (1968)
How to Cite This Entry:
Banach space of analytic functions with infinite-dimensional domains. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Banach_space_of_analytic_functions_with_infinite-dimensional_domains&oldid=18803
This article was adapted from an original article by Richard M. Aron (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article