Difference between revisions of "Arf-invariant"
(Importing text file) |
(TeX done) |
||
Line 1: | Line 1: | ||
''invariant of Arf'' | ''invariant of Arf'' | ||
− | An invariant of a quadratic form modulo 2, given on an integral lattice endowed with a bilinear skew-symmetric form. Let | + | An invariant of a quadratic form modulo 2, given on an integral lattice endowed with a bilinear skew-symmetric form. Let $L$ be an integral lattice of dimension $k=2m$ and let $\psi$ be a form for which $\psi(x,y) = -\psi(y,x)$. There exists bases $(e_1,f_1,\ldots,e_m,f_m)$, called symplectic bases, in which the matrix of $\psi$ reduces to block-diagonal form: The diagonal contains the blocks |
− | + | $$ | |
− | + | \left({\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}}\right) | |
− | + | $$ | |
i.e. | i.e. | ||
− | + | $$ | |
− | + | \psi(e_i,f_i) = -\psi(f_i,e_i) = 1 | |
− | + | $$ | |
while the other entries are zero. | while the other entries are zero. | ||
Suppose that a mapping | Suppose that a mapping | ||
− | + | $$ | |
− | + | \psi_0 : L \rightarrow \mathbf{Z}/2\mathbf{Z} | |
− | + | $$ | |
− | is given on | + | is given on $L$ such that |
− | + | $$ | |
− | + | \psi_0(x+y) = \psi_0(x) + \psi_0(y) + \psi(x,y)\ \pmod2 | |
− | + | $$ | |
(a "quadratic form modulo 2" ). The expression | (a "quadratic form modulo 2" ). The expression | ||
+ | $$ | ||
+ | \sum_{i=1}^m \psi_0(e_i)\psi_0(f_i) | ||
+ | $$ | ||
+ | is then called an Arf-invariant [[#References|[1]]]. If this expression equals zero, then there is a symplectic basis on all elements of which $\psi_0$ vanishes; if this expression equals one, then there is a symplectic basis on all elements of which, except $e_1$ and $f_1$, the form $\psi_0$ vanishes, while | ||
+ | $$ | ||
+ | \psi_0(e_1) = \psi_0(f_1) = 1 \ . | ||
+ | $$ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Arf, "Untersuchungen über quadratischen Formen in Körpern der Charakteristik 2, I" ''J. Reine Angew. Math.'' , '''183''' (1941) pp. 148–167</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> C. Arf, "Untersuchungen über quadratischen Formen in Körpern der Charakteristik 2, I" ''J. Reine Angew. Math.'' , '''183''' (1941) pp. 148–167</TD></TR> | ||
+ | </table> | ||
====Comments==== | ====Comments==== | ||
− | See [[#References|[a1]]], Appendix 1, for material concerning the Arf-invariant for inner product spaces over a field | + | See [[#References|[a1]]], Appendix 1, for material concerning the Arf-invariant for inner product spaces over a field $F$ of characteristic 2 in relation to the Witt algebra of quadratic inner product spaces over $F$. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Milnor, D. Husemoller, "Symmetric bilinear forms" , Springer (1973)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Milnor, D. Husemoller, "Symmetric bilinear forms" , Springer (1973)</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | {{TEX|done}} |
Revision as of 19:59, 23 December 2017
invariant of Arf
An invariant of a quadratic form modulo 2, given on an integral lattice endowed with a bilinear skew-symmetric form. Let $L$ be an integral lattice of dimension $k=2m$ and let $\psi$ be a form for which $\psi(x,y) = -\psi(y,x)$. There exists bases $(e_1,f_1,\ldots,e_m,f_m)$, called symplectic bases, in which the matrix of $\psi$ reduces to block-diagonal form: The diagonal contains the blocks $$ \left({\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}}\right) $$ i.e. $$ \psi(e_i,f_i) = -\psi(f_i,e_i) = 1 $$ while the other entries are zero.
Suppose that a mapping $$ \psi_0 : L \rightarrow \mathbf{Z}/2\mathbf{Z} $$ is given on $L$ such that $$ \psi_0(x+y) = \psi_0(x) + \psi_0(y) + \psi(x,y)\ \pmod2 $$ (a "quadratic form modulo 2" ). The expression $$ \sum_{i=1}^m \psi_0(e_i)\psi_0(f_i) $$ is then called an Arf-invariant [1]. If this expression equals zero, then there is a symplectic basis on all elements of which $\psi_0$ vanishes; if this expression equals one, then there is a symplectic basis on all elements of which, except $e_1$ and $f_1$, the form $\psi_0$ vanishes, while $$ \psi_0(e_1) = \psi_0(f_1) = 1 \ . $$
References
[1] | C. Arf, "Untersuchungen über quadratischen Formen in Körpern der Charakteristik 2, I" J. Reine Angew. Math. , 183 (1941) pp. 148–167 |
Comments
See [a1], Appendix 1, for material concerning the Arf-invariant for inner product spaces over a field $F$ of characteristic 2 in relation to the Witt algebra of quadratic inner product spaces over $F$.
References
[a1] | J. Milnor, D. Husemoller, "Symmetric bilinear forms" , Springer (1973) |
Arf-invariant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Arf-invariant&oldid=12338