Namespaces
Variants
Actions

Difference between revisions of "Trotter product formula"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (better)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
{{TEX|done}}
 
The following formula for the exponential of two not necessarily commuting operators:
 
The following formula for the exponential of two not necessarily commuting operators:
 +
\begin{equation}
 +
\exp(A+B)=\lim_{n\to\infty}(\exp(A/n)\exp(B/n))^n.\label{a1}
 +
\end{equation}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t0943401.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
The easiest case of this is to see this as a (formal) identity in the completion (with respect to the augmentation ideal) of the free associative algebra over $\mathbf Q$ in the variables $A$ and $B$, where both $A$ and $B$ are given degree $1$.
  
The easiest case of this is to see this as a (formal) identity in the completion (with respect to the augmentation ideal) of the free associative algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t0943402.png" /> in the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t0943403.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t0943404.png" />, where both <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t0943405.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t0943406.png" /> are given degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t0943407.png" />.
+
The case of \eqref{a1} where $A$ and $B$ are $(n\times n)$-matrices is due to S. Lie, and is simply known as the product formula for matrix exponentials.
 
 
The case of (a1) where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t0943408.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t0943409.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t09434010.png" />-matrices is due to S. Lie, and is simply known as the product formula for matrix exponentials.
 
  
 
In the form
 
In the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t09434011.png" /></td> </tr></table>
+
$$\exp(it(A+B))=s-\lim_{n\to\infty}(\exp(itA/n)\exp(itB/n))^n,$$
  
which is important in theoretical physics, it holds, e.g., when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t09434012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t09434013.png" /> are self-adjoint operators on a separable Hilbert space such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t09434014.png" />, defined on the intersection of the domains of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t09434015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t09434016.png" />, is essentially self-adjoint. And in the form
+
which is important in theoretical physics, it holds, e.g., when $A$ and $B$ are self-adjoint operators on a separable Hilbert space such that $A+B$, defined on the intersection of the domains of $A$ and $B$, is essentially self-adjoint. And in the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t09434017.png" /></td> </tr></table>
+
$$\exp(-t(A+B))=s-\lim_{n\to\infty}(\exp(-tA/n)\exp(-tB/n))^n$$
  
it holds (for positive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t09434018.png" />) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t09434019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094340/t09434020.png" /> are bounded from below.
+
it holds (for positive $t$) if $A$ and $B$ are bounded from below.
  
 
Collectively these results (and several more variants) are also known as the Trotter–Kato theorem.
 
Collectively these results (and several more variants) are also known as the Trotter–Kato theorem.
Line 22: Line 24:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Trotter,  "On the product of semigroups of operators"  ''Proc. Amer. Math. Soc.'' , '''10'''  (1959)  pp. 545–551</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  T. Kato,  "Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups"  I. Gohberg (ed.)  M. Kac (ed.) , ''Topics in functional analysis'' , Acad. Press  (1978)  pp. 185–195</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  B. Simon,  "Functional integration and quantum mechanics" , Acad. Press  (1979)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  E.B. Davies,  "One-parameter semigroups" , Acad. Press  (1980)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Trotter,  "On the product of semigroups of operators"  ''Proc. Amer. Math. Soc.'' , '''10'''  (1959)  pp. 545–551</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  T. Kato,  "Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups"  I. Gohberg (ed.)  M. Kac (ed.) , ''Topics in functional analysis'' , Acad. Press  (1978)  pp. 185–195</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  B. Simon,  "Functional integration and quantum mechanics" , Acad. Press  (1979)</TD></TR>
 +
<TR><TD valign="top">[a4]</TD> <TD valign="top">  E.B. Davies,  "One-parameter semigroups" , Acad. Press  (1980)</TD></TR>
 +
</table>

Latest revision as of 21:49, 3 December 2017

The following formula for the exponential of two not necessarily commuting operators: \begin{equation} \exp(A+B)=\lim_{n\to\infty}(\exp(A/n)\exp(B/n))^n.\label{a1} \end{equation}

The easiest case of this is to see this as a (formal) identity in the completion (with respect to the augmentation ideal) of the free associative algebra over $\mathbf Q$ in the variables $A$ and $B$, where both $A$ and $B$ are given degree $1$.

The case of \eqref{a1} where $A$ and $B$ are $(n\times n)$-matrices is due to S. Lie, and is simply known as the product formula for matrix exponentials.

In the form

$$\exp(it(A+B))=s-\lim_{n\to\infty}(\exp(itA/n)\exp(itB/n))^n,$$

which is important in theoretical physics, it holds, e.g., when $A$ and $B$ are self-adjoint operators on a separable Hilbert space such that $A+B$, defined on the intersection of the domains of $A$ and $B$, is essentially self-adjoint. And in the form

$$\exp(-t(A+B))=s-\lim_{n\to\infty}(\exp(-tA/n)\exp(-tB/n))^n$$

it holds (for positive $t$) if $A$ and $B$ are bounded from below.

Collectively these results (and several more variants) are also known as the Trotter–Kato theorem.

The Trotter product formula finds many applications in quantum theory, both in theoretical and in simulation studies (of quantum spin systems, e.g).

References

[a1] H. Trotter, "On the product of semigroups of operators" Proc. Amer. Math. Soc. , 10 (1959) pp. 545–551
[a2] T. Kato, "Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups" I. Gohberg (ed.) M. Kac (ed.) , Topics in functional analysis , Acad. Press (1978) pp. 185–195
[a3] B. Simon, "Functional integration and quantum mechanics" , Acad. Press (1979)
[a4] E.B. Davies, "One-parameter semigroups" , Acad. Press (1980)
How to Cite This Entry:
Trotter product formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Trotter_product_formula&oldid=19177