Namespaces
Variants
Actions

Difference between revisions of "Period of a function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX done)
 
(One intermediate revision by the same user not shown)
Line 6: Line 6:
 
$$
 
$$
  
The numbers $\pm nT$, where $n$ is a natural number, are also periods of $f$. For a function $f=\text{const.}$ on an axis or on a plane, any number $T$ is a period; for the [[Dirichlet-function|Dirichlet function]]
+
The numbers $\pm nT$, where $n$ is a natural number, are also periods of $f$. For a function $f=\text{const.}$ on an axis or on a plane, any number $T\ne0$ is a period; for the [[Dirichlet-function|Dirichlet function]]
 
$$
 
$$
 
D(x) = \begin{cases} 1 &\text{if}\ x\ \text{is rational} \\ 0 & \text{if}\ x\ \text{is irrational} \end{cases} \ ,
 
D(x) = \begin{cases} 1 &\text{if}\ x\ \text{is rational} \\ 0 & \text{if}\ x\ \text{is irrational} \end{cases} \ ,
 
$$
 
$$
any rational number $T$ is a period. If a function $f$ has period $T$, then the function $\psi(x) = f(ax+b)$, where $a$ and $b$ are constants and $a\ne0$, has period $T/a$. If a real-valued function $f$ of a real argument is continuous and periodic on $X$ (and is not identically equal to a constant), then it has a least period $T_0 > 0$ and any other real period is an integer multiple of $T_0$. There exist non-constant functions of a complex argument having two non-multiple periods with non-real quotient, such as for example an [[elliptic function]].
+
any rational number $T\ne0$ is a period. If a function $f$ has period $T$, then the function $\psi(x) = f(ax+b)$, where $a$ and $b$ are constants and $a\ne0$, has period $T/a$. If a real-valued function $f$ of a real argument is continuous and periodic on $X$ (and is not identically equal to a constant), then it has a least period $T_0 > 0$ and any other real period is an integer multiple of $T_0$. There exist non-constant [[double-periodic function]]s of a complex argument, having two periods with non-real quotient, such as for example the [[elliptic function]]s.
  
 
Similarly one defines the period of a function defined on an Abelian group.
 
Similarly one defines the period of a function defined on an Abelian group.
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 21:30, 18 November 2017

$f$ with domain $X$

A number $T \ne 0$ such that for any $x \in X \subset \mathbf{R}$ (or $x \in X \subset \mathbf{C}$) the numbers $x+T$ and $x-T$ also belong to $X$ and such that the following equality holds: $$ f(x \pm T) = f(x) \ . $$

The numbers $\pm nT$, where $n$ is a natural number, are also periods of $f$. For a function $f=\text{const.}$ on an axis or on a plane, any number $T\ne0$ is a period; for the Dirichlet function $$ D(x) = \begin{cases} 1 &\text{if}\ x\ \text{is rational} \\ 0 & \text{if}\ x\ \text{is irrational} \end{cases} \ , $$ any rational number $T\ne0$ is a period. If a function $f$ has period $T$, then the function $\psi(x) = f(ax+b)$, where $a$ and $b$ are constants and $a\ne0$, has period $T/a$. If a real-valued function $f$ of a real argument is continuous and periodic on $X$ (and is not identically equal to a constant), then it has a least period $T_0 > 0$ and any other real period is an integer multiple of $T_0$. There exist non-constant double-periodic functions of a complex argument, having two periods with non-real quotient, such as for example the elliptic functions.

Similarly one defines the period of a function defined on an Abelian group.

Comments

Cf. also Periodic function.

How to Cite This Entry:
Period of a function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Period_of_a_function&oldid=42319
This article was adapted from an original article by A.A. Konyushkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article