Namespaces
Variants
Actions

Difference between revisions of "Stopping time"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (better)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090380/s0903801.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090380/s0903802.png" />, be a non-decreasing family of sub-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090380/s0903803.png" />-algebras on a [[Measurable space|measurable space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090380/s0903804.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090380/s0903805.png" /> is an interval in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090380/s0903806.png" /> or a subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090380/s0903807.png" />. Then a stopping time (relative to this family of subalgebras) is a mapping ( a [[Random variable|random variable]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090380/s0903808.png" /> such that
+
Let $\mathcal{F}_t$, $t\in T$, be a non-decreasing family of sub-$\sigma$-algebras on a [[measurable space]] $(\Omega,\mathcal{F})$, where $T$ is an interval in $[0,\infty]$ or a subset of $\{0,1,2,\ldots,\infty\}$. Then a stopping time (relative to this family of subalgebras) is a mapping (a [[random variable]]) $\tau : \Omega \rightarrow T \cup \{\infty\}$ such that
 +
$$
 +
\{\tau(\omega) \le t\} \in \mathcal{F}_t
 +
$$
 +
for all $t\in T$. Such a random variable is also called an optional random variable. This condition has the interpretation that the (time-valued) random variable $\tau$ has no knowledge of the future, since the $\sigma$-algebra $\mathcal{F}_t$ embodies  "random events up to time $t$" . Many stopping times arise as  "the point of time at which a given random event is observed for the first time" ; for instance, the first time of entry of a stochastic process $X(t)$ into a set $A$ (hitting time). In the (translated) Russian literature the phrase [[Markov moment]], or Markov time, is often used for stopping time. Occasionally one also finds the phrase non-anticipating time. Stopping times naturally arise, e.g., in optimal stopping problems, cf., e.g., [[#References|[a4]]].
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090380/s0903809.png" /></td> </tr></table>
+
====References====
 +
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Bauer,  "Probability theory and elements of measure theory" , Holt, Rinehart &amp; Winston  (1972)  pp. 332  (Translated from German)</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  J. Lamperti,  "Stochastic processes" , Springer  (1977)  pp. 210–213</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  K.L. Chung,  "Elementary probability theory with stochastic processes" , Springer  (1974)  pp. 269</TD></TR>
 +
<TR><TD valign="top">[a4]</TD> <TD valign="top">  I.I. [I.I. Gikhman] Gihman,  A.V. [A.V. Skorokhod] Skorohod,  "Controlled stochastic processes" , Springer  (1979)  (Translated from Russian)</TD></TR>
 +
<TR><TD valign="top">[a5]</TD> <TD valign="top">  M.M. Rao,  "Stochastic processes and integration" , Sijthoff &amp; Noordhoff  (1979)</TD></TR>
 +
</table>
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090380/s09038010.png" />. Such a random variable is also called an optional random variable. This condition has the interpretation that the (time-valued) random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090380/s09038011.png" /> has no knowledge of the future, since the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090380/s09038012.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090380/s09038013.png" /> embodies  "random events up to time t" . Many stopping times arise as  "the point of time at which a given random event is observed for the first time" ; for instance, the first time of entry of a stochastic process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090380/s09038014.png" /> into a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090380/s09038015.png" /> (hitting time). In the (translated) Russian literature the phrase [[Markov moment|Markov moment]], or Markov time, is often used for stopping time. Occasionally one also finds the phrase non-anticipating time. Stopping times naturally arise, e.g., in optimal stopping problems, cf., e.g., [[#References|[a4]]].
+
{{TEX|done}}
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Bauer,  "Probability theory and elements of measure theory" , Holt, Rinehart &amp; Winston  (1972)  pp. 332  (Translated from German)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J. Lamperti,  "Stochastic processes" , Springer  (1977)  pp. 210–213</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  K.L. Chung,  "Elementary probability theory with stochastic processes" , Springer  (1974)  pp. 269</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  I.I. [I.I. Gikhman] Gihman,  A.V. [A.V. Skorokhod] Skorohod,  "Controlled stochastic processes" , Springer  (1979)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  M.M. Rao,  "Stochastic processes and integration" , Sijthoff &amp; Noordhoff  (1979)</TD></TR></table>
 

Latest revision as of 19:06, 11 October 2017

Let $\mathcal{F}_t$, $t\in T$, be a non-decreasing family of sub-$\sigma$-algebras on a measurable space $(\Omega,\mathcal{F})$, where $T$ is an interval in $[0,\infty]$ or a subset of $\{0,1,2,\ldots,\infty\}$. Then a stopping time (relative to this family of subalgebras) is a mapping (a random variable) $\tau : \Omega \rightarrow T \cup \{\infty\}$ such that $$ \{\tau(\omega) \le t\} \in \mathcal{F}_t $$ for all $t\in T$. Such a random variable is also called an optional random variable. This condition has the interpretation that the (time-valued) random variable $\tau$ has no knowledge of the future, since the $\sigma$-algebra $\mathcal{F}_t$ embodies "random events up to time $t$" . Many stopping times arise as "the point of time at which a given random event is observed for the first time" ; for instance, the first time of entry of a stochastic process $X(t)$ into a set $A$ (hitting time). In the (translated) Russian literature the phrase Markov moment, or Markov time, is often used for stopping time. Occasionally one also finds the phrase non-anticipating time. Stopping times naturally arise, e.g., in optimal stopping problems, cf., e.g., [a4].

References

[a1] H. Bauer, "Probability theory and elements of measure theory" , Holt, Rinehart & Winston (1972) pp. 332 (Translated from German)
[a2] J. Lamperti, "Stochastic processes" , Springer (1977) pp. 210–213
[a3] K.L. Chung, "Elementary probability theory with stochastic processes" , Springer (1974) pp. 269
[a4] I.I. [I.I. Gikhman] Gihman, A.V. [A.V. Skorokhod] Skorohod, "Controlled stochastic processes" , Springer (1979) (Translated from Russian)
[a5] M.M. Rao, "Stochastic processes and integration" , Sijthoff & Noordhoff (1979)
How to Cite This Entry:
Stopping time. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stopping_time&oldid=11842