Difference between revisions of "Orthonormal system"
(Importing text file) |
(TeX done) |
||
Line 1: | Line 1: | ||
− | An orthonormal system of vectors is a | + | An orthonormal system of vectors is a system $(x_\alpha)$ of vectors in a Euclidean (Hilbert) space with inner product $(\cdot,\cdot)$ such that $(x_\alpha,x_\beta) = 0$ if $\alpha \ne \beta$ (orthogonality) and $(x_\alpha,x_\alpha) = 1$ (normalization). |
''M.I. Voitsekhovskii'' | ''M.I. Voitsekhovskii'' | ||
− | An orthonormal system of functions is a system | + | An orthonormal system of functions in a space $L^2(X,S,\mu)$ is a system $(\phi_k)$ of functions which is both an [[orthogonal system]] and a [[normalized system]] , i.e. |
+ | $$ | ||
+ | \int_X \phi_i \bar\phi_j \mathrm{d}\mu = \begin{cases} 0 & \ \text{if}\ i \ne j \\ 1 & \ \text{if}\ i=j \end{cases} \ . | ||
+ | $$ | ||
− | + | In the mathematical literature, the term "orthogonal system" often means "orthonormal system" ; when studying a given orthogonal system, it is not always crucial whether or not it is normalized. None the less, if the systems are normalized, a clearer formulation is possible for certain theorems on the convergence of a series | |
− | + | $$ | |
− | + | \sum_{k=1}^\infty c_k \phi_k(x) | |
− | + | $$ | |
− | + | in terms of the behaviour of the coefficients $(c_k)$. An example of this type of theorem is the [[Riesz-Fischer theorem|Riesz–Fischer theorem]]: The series | |
− | + | $$ | |
− | in terms of the behaviour of the coefficients | + | \sum_{k=1}^\infty c_k \phi_k(x) |
− | + | $$ | |
− | + | with respect to an orthonormal system$(\phi_k)_{k=1}^\infty$ in $L^2[a,b]$ converges in the metric of $L^2[a,b]$ if and only if | |
− | + | $$ | |
− | with respect to an orthonormal system | + | \sum_{k=1}^\infty |c_k|^2 < \infty \ . |
− | + | $$ | |
− | |||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Pitman (1981) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Pitman (1981) (Translated from Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951)</TD></TR> | ||
+ | </table> | ||
''A.A. Talalyan'' | ''A.A. Talalyan'' | ||
Line 28: | Line 33: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Weidmann, "Linear operators in Hilbert space" , Springer (1980)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> K. Yosida, "Functional analysis" , Springer (1980) pp. Chapt. 8, Sect. 4; 5</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Weidmann, "Linear operators in Hilbert space" , Springer (1980)</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> K. Yosida, "Functional analysis" , Springer (1980) pp. Chapt. 8, Sect. 4; 5</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | {{TEX|done}} |
Latest revision as of 18:58, 7 September 2017
An orthonormal system of vectors is a system $(x_\alpha)$ of vectors in a Euclidean (Hilbert) space with inner product $(\cdot,\cdot)$ such that $(x_\alpha,x_\beta) = 0$ if $\alpha \ne \beta$ (orthogonality) and $(x_\alpha,x_\alpha) = 1$ (normalization).
M.I. Voitsekhovskii
An orthonormal system of functions in a space $L^2(X,S,\mu)$ is a system $(\phi_k)$ of functions which is both an orthogonal system and a normalized system , i.e. $$ \int_X \phi_i \bar\phi_j \mathrm{d}\mu = \begin{cases} 0 & \ \text{if}\ i \ne j \\ 1 & \ \text{if}\ i=j \end{cases} \ . $$
In the mathematical literature, the term "orthogonal system" often means "orthonormal system" ; when studying a given orthogonal system, it is not always crucial whether or not it is normalized. None the less, if the systems are normalized, a clearer formulation is possible for certain theorems on the convergence of a series $$ \sum_{k=1}^\infty c_k \phi_k(x) $$ in terms of the behaviour of the coefficients $(c_k)$. An example of this type of theorem is the Riesz–Fischer theorem: The series $$ \sum_{k=1}^\infty c_k \phi_k(x) $$ with respect to an orthonormal system$(\phi_k)_{k=1}^\infty$ in $L^2[a,b]$ converges in the metric of $L^2[a,b]$ if and only if $$ \sum_{k=1}^\infty |c_k|^2 < \infty \ . $$
References
[1] | A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Pitman (1981) (Translated from Russian) |
[2] | S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951) |
A.A. Talalyan
Comments
References
[a1] | J. Weidmann, "Linear operators in Hilbert space" , Springer (1980) |
[a2] | K. Yosida, "Functional analysis" , Springer (1980) pp. Chapt. 8, Sect. 4; 5 |
Orthonormal system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Orthonormal_system&oldid=15467