Namespaces
Variants
Actions

Difference between revisions of "Negative hypergeometric distribution"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Edit formula)
(formula label)
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
A [[Probability distribution|probability distribution]] of a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n0662201.png" /> which takes non-negative integer values, defined by the formula
+
{{MSC|62E}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">
+
A
  <math>P(X=k)=\frac{ {k+m-N \choose k}{N-m-k \choose M-m} } { {N \choose M} }</math>
+
[[Probability distribution|probability distribution]] of a random variable $X$ which takes non-negative integer values, defined by the formula
</td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
\begin{equation}
 
+
  P(X=k)=\frac{ {k+m-1 \choose k}{N-m-k \choose M-m} } { {N \choose M} } \tag{*}\label{*}
where the parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n0662203.png" /> are non-negative integers which satisfy the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n0662204.png" />. A negative hypergeometric distribution often arises in a scheme of sampling without replacement. If in the total population of size <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n0662205.png" />, there are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n0662206.png" />  "marked"  and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n0662207.png" />  "unmarked"  elements, and if the sampling (without replacement) is performed until the number of  "marked"  elements reaches a fixed number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n0662208.png" />, then the random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n0662209.png" /> — the number of  "unmarked"  elements in the sample — has a negative hypergeometric distribution (*). The random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n06622010.png" /> — the size of the sample — also has a negative hypergeometric distribution. The distribution (*) is called a negative hypergeometric distribution by analogy with the [[Negative binomial distribution|negative binomial distribution]], which arises in the same way for sampling with replacement.
+
\end{equation}
 +
where the parameters <math>N,M,m</math> are non-negative integers which satisfy the condition <math>m\leq M\leq N</math>. A negative hypergeometric distribution often arises in a scheme of sampling without replacement. If in the total population of size <math>N</math>, there are <math>M</math>  "marked"  and <math>N-M</math>  "unmarked"  elements, and if the sampling (without replacement) is performed until the number of  "marked"  elements reaches a fixed number <math>m</math>, then the random variable <math>X</math> — the number of  "unmarked"  elements in the sample — has a negative hypergeometric distribution \eqref{*}. The random variable <math>X+m</math> — the size of the sample — also has a negative hypergeometric distribution. The distribution \eqref{*} is called a negative hypergeometric distribution by analogy with the
 +
[[Negative binomial distribution|negative binomial distribution]], which arises in the same way for sampling with replacement.
  
 
The mathematical expectation and variance of a negative hypergeometric distribution are, respectively, equal to
 
The mathematical expectation and variance of a negative hypergeometric distribution are, respectively, equal to
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n06622011.png" /></td> </tr></table>
+
\begin{equation}
 +
m\frac{N-M} {M+1}
 +
\end{equation}
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n06622012.png" /></td> </tr></table>
+
\begin{equation}
 
+
m\frac{(N+1)(N-M)} {(M+1)(M+2)}\Big(1-\frac{m}{M+1}\Big) \, .
When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n06622013.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n06622014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n06622015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n06622016.png" />, the negative hypergeometric distribution tends to the negative binomial distribution with parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n06622017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n06622018.png" />.
+
\end{equation}
 
 
The distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n06622019.png" /> of the negative hypergeometric function with parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n06622020.png" /> is related to the [[Hypergeometric distribution|hypergeometric distribution]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n06622021.png" /> with parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n06622022.png" /> by the relation
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066220/n06622023.png" /></td> </tr></table>
 
 
 
This means that in solving problems in mathematical statistics related to negative hypergeometric distributions, tables of hypergeometric distributions can be used. The negative hypergeometric distribution is used, for example, in [[Statistical quality control|statistical quality control]].
 
 
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  Y.K. Belyaev,  "Probability methods of sampling control" , Moscow  (1975) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.N. Bol'shev,  N.V. Smirnov,  "Tables of mathematical statistics" , ''Libr. math. tables'' , '''46''' , Nauka  (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova)</TD></TR></table>
 
 
 
 
 
  
====Comments====
+
When <math>N, M, N-M \to \infty</math> such that <math>M/N\to p</math>, the negative hypergeometric distribution tends to the
 +
[[negative binomial distribution]] with parameters <math>m</math> and <math>p</math>.
  
 +
The distribution function <math>F(n)</math> of the negative hypergeometric function with parameters <math>N,M,m</math> is related to the
 +
[[Hypergeometric distribution|hypergeometric distribution]] <math>G(m)</math> with parameters <math>N,M,n</math> by the relation
 +
\begin{equation}
 +
F(n) = 1-G(m-1) \, .
 +
\end{equation}
 +
This means that in solving problems in mathematical statistics related to negative hypergeometric distributions, tables of hypergeometric distributions can be used. The negative hypergeometric distribution is used, for example, in
 +
[[Statistical quality control|statistical quality control]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N.L. Johnson,  S. Kotz,  "Distributions in statistics, discrete distributions" , Wiley  (1969)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G.P. Patil,  S.W. Joshi,  "A dictionary and bibliography of discrete distributions" , Hafner  (1968)</TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|Be}}||valign="top"|  Y.K. Belyaev,  "Probability methods of sampling control", Moscow  (1975)  (In Russian) {{MR|0428663}} 
 +
|-
 +
|valign="top"|{{Ref|BoSm}}||valign="top"|  L.N. Bol'shev,  N.V. Smirnov,  "Tables of mathematical statistics", ''Libr. math. tables'', '''46''', Nauka  (1983)  (In Russian)  (Processed by L.S. Bark and E.S. Kedrova) {{MR|0243650}} {{ZBL|0529.62099}}
 +
|-
 +
|valign="top"|{{Ref|JoKo}}||valign="top"| N.L. Johnson,  S. Kotz,  "Distributions in statistics, discrete distributions", Wiley  (1969) {{MR|0268996}} {{ZBL|0292.62009}}
 +
|-
 +
|valign="top"|{{Ref|PaJo}}||valign="top"| G.P. Patil,  S.W. Joshi,  "A dictionary and bibliography of discrete distributions", Hafner  (1968) {{MR|0282770}}
 +
|-
 +
|}

Latest revision as of 14:48, 5 June 2017

2020 Mathematics Subject Classification: Primary: 62E [MSN][ZBL]

A probability distribution of a random variable $X$ which takes non-negative integer values, defined by the formula \begin{equation} P(X=k)=\frac{ {k+m-1 \choose k}{N-m-k \choose M-m} } { {N \choose M} } \tag{*}\label{*} \end{equation} where the parameters \(N,M,m\) are non-negative integers which satisfy the condition \(m\leq M\leq N\). A negative hypergeometric distribution often arises in a scheme of sampling without replacement. If in the total population of size \(N\), there are \(M\) "marked" and \(N-M\) "unmarked" elements, and if the sampling (without replacement) is performed until the number of "marked" elements reaches a fixed number \(m\), then the random variable \(X\) — the number of "unmarked" elements in the sample — has a negative hypergeometric distribution \eqref{*}. The random variable \(X+m\) — the size of the sample — also has a negative hypergeometric distribution. The distribution \eqref{*} is called a negative hypergeometric distribution by analogy with the negative binomial distribution, which arises in the same way for sampling with replacement.

The mathematical expectation and variance of a negative hypergeometric distribution are, respectively, equal to

\begin{equation} m\frac{N-M} {M+1} \end{equation}

and

\begin{equation} m\frac{(N+1)(N-M)} {(M+1)(M+2)}\Big(1-\frac{m}{M+1}\Big) \, . \end{equation}

When \(N, M, N-M \to \infty\) such that \(M/N\to p\), the negative hypergeometric distribution tends to the negative binomial distribution with parameters \(m\) and \(p\).

The distribution function \(F(n)\) of the negative hypergeometric function with parameters \(N,M,m\) is related to the hypergeometric distribution \(G(m)\) with parameters \(N,M,n\) by the relation \begin{equation} F(n) = 1-G(m-1) \, . \end{equation} This means that in solving problems in mathematical statistics related to negative hypergeometric distributions, tables of hypergeometric distributions can be used. The negative hypergeometric distribution is used, for example, in statistical quality control.

References

[Be] Y.K. Belyaev, "Probability methods of sampling control", Moscow (1975) (In Russian) MR0428663
[BoSm] L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics", Libr. math. tables, 46, Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova) MR0243650 Zbl 0529.62099
[JoKo] N.L. Johnson, S. Kotz, "Distributions in statistics, discrete distributions", Wiley (1969) MR0268996 Zbl 0292.62009
[PaJo] G.P. Patil, S.W. Joshi, "A dictionary and bibliography of discrete distributions", Hafner (1968) MR0282770
How to Cite This Entry:
Negative hypergeometric distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Negative_hypergeometric_distribution&oldid=36349
This article was adapted from an original article by A.V. Prokhorov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article