Namespaces
Variants
Actions

Difference between revisions of "Holley inequality"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(Tex done)
Line 1: Line 1:
An inequality for a finite [[Distributive lattice|distributive lattice]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110230/h1102301.png" />, saying that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110230/h1102302.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110230/h1102303.png" /> map <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110230/h1102304.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110230/h1102305.png" /> and satisfy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110230/h1102306.png" /> and
+
An inequality for a finite [[distributive lattice]] $(\Gamma,{\prec})$, saying that if $\mu_1$ and $\mu_2$ map $\Gamma$ into $(0,\infty)$ and satisfy $\sum_\Gamma \mu_1(a) = \sum_\Gamma \mu_2(a)$ and
 +
$$
 +
\mu_1(a) \mu_2(b) \le \mu_1(a \vee v) \mu_2(a \wedge b)
 +
$$
 +
for all $a,b \in \Gamma$, then
 +
$$
 +
\sum_\Gamma f(a) \mu_1(a) \ge \sum_\Gamma f(a) \mu_2(a)
 +
$$
 +
for every $f : \Gamma \rightarrow \mathbf{R}$ that is non-decreasing in the sense that $a \prec b$ implies $f(a) \le f(b)$. It is due to R. Holley [[#References|[a4]]] and was motivated by the related [[FKG inequality]] [[#References|[a3]]]. It is an easy corollary [[#References|[a2]]] of the more powerful [[Ahlswede–Daykin inequality]] [[#References|[a1]]].
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110230/h1102307.png" /></td> </tr></table>
+
See also [[Correlation inequalities]]; [[Fishburn–Shepp inequality]].
  
then
+
====References====
 +
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Ahlswede,  D.E. Daykin,  "An inequality for the weights of two families, their unions and intersections"  ''Z. Wahrscheinlichkeitsth. verw. Gebiete'' , '''43'''  (1978)  pp. 183–185</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  P.C. Fishburn,  "Correlation in partially ordered sets"  ''Discrete Appl. Math.'' , '''39'''  (1992)  pp. 173–191</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  C.M. Fortuin,  P.N. Kasteleyn,  J. Ginibre,  "Correlation inequalities for some partially ordered sets"  ''Comm. Math. Phys.'' , '''22'''  (1971)  pp. 89–103</TD></TR>
 +
<TR><TD valign="top">[a4]</TD> <TD valign="top">  R. Holley,  "Remarks on the FKG inequalities"  ''Comm. Math. Phys.'' , '''36'''  (1974)  pp. 227–231</TD></TR>
 +
</table>
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110230/h1102308.png" /></td> </tr></table>
+
{{TEX|done}}
 
 
for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110230/h1102309.png" /> that is non-decreasing in the sense that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110230/h11023010.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110230/h11023011.png" />. It is due to R. Holley [[#References|[a4]]] and was motivated by the related [[FKG inequality|FKG inequality]] [[#References|[a3]]]. It is an easy corollary [[#References|[a2]]] of the more powerful [[Ahlswede–Daykin inequality|Ahlswede–Daykin inequality]] [[#References|[a1]]].
 
 
 
See also [[Correlation inequalities|Correlation inequalities]]; [[Fishburn–Shepp inequality|Fishburn–Shepp inequality]].
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Ahlswede,  D.E. Daykin,  "An inequality for the weights of two families, their unions and intersections"  ''Z. Wahrscheinlichkeitsth. verw. Gebiete'' , '''43'''  (1978)  pp. 183–185</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  P.C. Fishburn,  "Correlation in partially ordered sets"  ''Discrete Appl. Math.'' , '''39'''  (1992)  pp. 173–191</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  C.M. Fortuin,  P.N. Kasteleyn,  J. Ginibre,  "Correlation inequalities for some partially ordered sets"  ''Comm. Math. Phys.'' , '''22'''  (1971)  pp. 89–103</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R. Holley,  "Remarks on the FKG inequalities"  ''Comm. Math. Phys.'' , '''36'''  (1974)  pp. 227–231</TD></TR></table>
 

Revision as of 17:56, 16 December 2016

An inequality for a finite distributive lattice $(\Gamma,{\prec})$, saying that if $\mu_1$ and $\mu_2$ map $\Gamma$ into $(0,\infty)$ and satisfy $\sum_\Gamma \mu_1(a) = \sum_\Gamma \mu_2(a)$ and $$ \mu_1(a) \mu_2(b) \le \mu_1(a \vee v) \mu_2(a \wedge b) $$ for all $a,b \in \Gamma$, then $$ \sum_\Gamma f(a) \mu_1(a) \ge \sum_\Gamma f(a) \mu_2(a) $$ for every $f : \Gamma \rightarrow \mathbf{R}$ that is non-decreasing in the sense that $a \prec b$ implies $f(a) \le f(b)$. It is due to R. Holley [a4] and was motivated by the related FKG inequality [a3]. It is an easy corollary [a2] of the more powerful Ahlswede–Daykin inequality [a1].

See also Correlation inequalities; Fishburn–Shepp inequality.

References

[a1] R. Ahlswede, D.E. Daykin, "An inequality for the weights of two families, their unions and intersections" Z. Wahrscheinlichkeitsth. verw. Gebiete , 43 (1978) pp. 183–185
[a2] P.C. Fishburn, "Correlation in partially ordered sets" Discrete Appl. Math. , 39 (1992) pp. 173–191
[a3] C.M. Fortuin, P.N. Kasteleyn, J. Ginibre, "Correlation inequalities for some partially ordered sets" Comm. Math. Phys. , 22 (1971) pp. 89–103
[a4] R. Holley, "Remarks on the FKG inequalities" Comm. Math. Phys. , 36 (1974) pp. 227–231
How to Cite This Entry:
Holley inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Holley_inequality&oldid=16690
This article was adapted from an original article by P.C. Fishburn (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article