Namespaces
Variants
Actions

Difference between revisions of "Pseudo algebraically closed field"

From Encyclopedia of Mathematics
Jump to: navigation, search
(typo?)
(PAC over a ring, cite Jarden and Razon)
Line 1: Line 1:
 +
{{TEX|done}}
 +
 +
''PAC field''
 +
 
A field $K$ for which every non-empty [[algebraic variety]] defined over $K$ has a $K$-rational point.  Clearly an [[algebraically closed field]] is PAC.  The Brauer group of a PAC field is trivial.
 
A field $K$ for which every non-empty [[algebraic variety]] defined over $K$ has a $K$-rational point.  Clearly an [[algebraically closed field]] is PAC.  The Brauer group of a PAC field is trivial.
 +
 +
More generally, let $O$ be a subset of $K$. The field $K$ is said to be PAC over $O$ if for every affine absolutely irreducible variety $V$ of dimension $n\ge0$ and for each dominating separable rational map $\phi : V \rightarrow A^r$  over $K$ there exists $a \in V(K)$ such that $\phi(a) \in O^r$. Each PAC field is PAC over itself.
  
 
See also [[Quasi-algebraically closed field]].
 
See also [[Quasi-algebraically closed field]].
Line 5: Line 11:
 
====References====
 
====References====
 
* Fried, Michael D.; Jarden, Moshe ''Field arithmetic'' (3rd revised ed.) Ergebnisse der Mathematik und ihrer Grenzgebiete. 3e Folge '''11''' Springer (2008) ISBN 978-3-540-77269-9 {{ZBL|1145.12001}}
 
* Fried, Michael D.; Jarden, Moshe ''Field arithmetic'' (3rd revised ed.) Ergebnisse der Mathematik und ihrer Grenzgebiete. 3e Folge '''11''' Springer (2008) ISBN 978-3-540-77269-9 {{ZBL|1145.12001}}
 +
* Jarden, Moshe; Razon, Aharon ''Pseudo algebraically closed fields over rings'' Isr. J. Math. '''86''' (1994) 25-59 {{DOI|10.1007/BF02773673}} {{ZBL|0802.12007}}

Revision as of 12:44, 11 December 2016


PAC field

A field $K$ for which every non-empty algebraic variety defined over $K$ has a $K$-rational point. Clearly an algebraically closed field is PAC. The Brauer group of a PAC field is trivial.

More generally, let $O$ be a subset of $K$. The field $K$ is said to be PAC over $O$ if for every affine absolutely irreducible variety $V$ of dimension $n\ge0$ and for each dominating separable rational map $\phi : V \rightarrow A^r$ over $K$ there exists $a \in V(K)$ such that $\phi(a) \in O^r$. Each PAC field is PAC over itself.

See also Quasi-algebraically closed field.

References

  • Fried, Michael D.; Jarden, Moshe Field arithmetic (3rd revised ed.) Ergebnisse der Mathematik und ihrer Grenzgebiete. 3e Folge 11 Springer (2008) ISBN 978-3-540-77269-9 Zbl 1145.12001
  • Jarden, Moshe; Razon, Aharon Pseudo algebraically closed fields over rings Isr. J. Math. 86 (1994) 25-59 DOI 10.1007/BF02773673 Zbl 0802.12007
How to Cite This Entry:
Pseudo algebraically closed field. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pseudo_algebraically_closed_field&oldid=37154