Difference between revisions of "Bloch constant"
(Importing text file) |
(Tex done) |
||
Line 1: | Line 1: | ||
− | An absolute constant, the existence of which is established by Bloch's theorem. Let | + | An absolute constant, the existence of which is established by Bloch's theorem. Let $H$ be the class of all holomorphic functions $f(z)$ in the disc $|z| < 1$ such that $f'(0) = 1$. The Riemann surface of the function $f(z)$ contains on one of its sheets a largest open disc of radius $B_f > 0$. It was shown by A. Bloch [[#References|[1]]] that |
+ | $$ | ||
+ | B = \inf \{ B_f : f \in H \} > 0 \ . | ||
+ | $$ | ||
− | + | The most precise known estimate for $B$ is $\frac{\sqrt{3}}{4} \le B \le 0.472$ [[#References|[2]]]. It follows from Bloch's theorem that the Riemann surface of an entire function contains single-sheeted discs of arbitrary radius; this is equivalent to the [[Picard theorem]]: for the connection between the theorems of Bloch and Picard, see e.g. [[#References|[a1]]]. | |
− | |||
− | The most precise known estimate is | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Bloch, "Les théorèmes de M. Valiron sur les fonctions entières et la théorie de l'uniformisation" ''Ann. Fac. Sci. Univ. Toulouse (3)'' , '''17''' (1925) pp. 1–22</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.V. Ahlfors, H. Grunsky, "Ueber die Blochsche Konstante" ''Math. Z.'' , '''42''' (1937) pp. 671–673</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> A. Bloch, "Les théorèmes de M. Valiron sur les fonctions entières et la théorie de l'uniformisation" ''Ann. Fac. Sci. Univ. Toulouse (3)'' , '''17''' (1925) pp. 1–22</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> L.V. Ahlfors, H. Grunsky, "Ueber die Blochsche Konstante" ''Math. Z.'' , '''42''' (1937) pp. 671–673</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Heins, "Selected topics in the classical theory of functions of a complex variable" , Holt, Rinehart & Winston (1962)</TD></TR> | ||
+ | </table> | ||
− | + | {{TEX|done}} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 17:21, 13 November 2016
An absolute constant, the existence of which is established by Bloch's theorem. Let $H$ be the class of all holomorphic functions $f(z)$ in the disc $|z| < 1$ such that $f'(0) = 1$. The Riemann surface of the function $f(z)$ contains on one of its sheets a largest open disc of radius $B_f > 0$. It was shown by A. Bloch [1] that $$ B = \inf \{ B_f : f \in H \} > 0 \ . $$
The most precise known estimate for $B$ is $\frac{\sqrt{3}}{4} \le B \le 0.472$ [2]. It follows from Bloch's theorem that the Riemann surface of an entire function contains single-sheeted discs of arbitrary radius; this is equivalent to the Picard theorem: for the connection between the theorems of Bloch and Picard, see e.g. [a1].
References
[1] | A. Bloch, "Les théorèmes de M. Valiron sur les fonctions entières et la théorie de l'uniformisation" Ann. Fac. Sci. Univ. Toulouse (3) , 17 (1925) pp. 1–22 |
[2] | L.V. Ahlfors, H. Grunsky, "Ueber die Blochsche Konstante" Math. Z. , 42 (1937) pp. 671–673 |
[3] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
[a1] | M. Heins, "Selected topics in the classical theory of functions of a complex variable" , Holt, Rinehart & Winston (1962) |
Bloch constant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bloch_constant&oldid=16901