|
|
(3 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | ''of a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055220/k0552201.png" /> of algebraic systems''
| + | {{TEX|done}}{{MSC|08A30}} |
| | | |
− | The congruence (cf. [[Congruence (in algebra)|Congruence (in algebra)]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055220/k0552202.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055220/k0552203.png" /> consisting of all pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055220/k0552204.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055220/k0552205.png" />. For any congruence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055220/k0552206.png" /> on an algebraic system there is a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055220/k0552207.png" /> of this system for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055220/k0552208.png" /> is the kernel congruence. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055220/k0552209.png" /> is the kernel congruence of a strong homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055220/k05522010.png" /> of an algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055220/k05522011.png" /> onto a system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055220/k05522012.png" />, then the canonical mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055220/k05522013.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055220/k05522014.png" />, is an isomorphism of the quotient system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055220/k05522015.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055220/k05522016.png" />.
| + | ''of a homomorphism $\phi : A \rightarrow A'$ of algebraic systems'' |
| | | |
− | For references see [[Homomorphism|Homomorphism]]. | + | The congruence (cf. [[Congruence (in algebra)]]) $\theta$ on an [[algebraic system]] $A$ consisting of all pairs $(a,b) \in A \times A$ for which $\phi(a) = \phi(b)$, cf. [[Kernel of a function]]. For any congruence $\theta$ on an algebraic system there is a homomorphism $\phi$ of this system for which $\theta$ is the kernel congruence. If $\theta$ is the kernel congruence of a [[strong homomorphism]] $\phi$ of an algebraic system $A$ onto a system $A'$, then the canonical mapping $a/\theta \mapsto \phi(a)$, where $a/\theta = \{ b \in A : (b,a) \in \theta \}$, is an isomorphism of the quotient system $A/\theta$ onto $A'$. |
| + | |
| + | For references see [[Homomorphism]]. |
Latest revision as of 07:39, 13 November 2016
2020 Mathematics Subject Classification: Primary: 08A30 [MSN][ZBL]
of a homomorphism $\phi : A \rightarrow A'$ of algebraic systems
The congruence (cf. Congruence (in algebra)) $\theta$ on an algebraic system $A$ consisting of all pairs $(a,b) \in A \times A$ for which $\phi(a) = \phi(b)$, cf. Kernel of a function. For any congruence $\theta$ on an algebraic system there is a homomorphism $\phi$ of this system for which $\theta$ is the kernel congruence. If $\theta$ is the kernel congruence of a strong homomorphism $\phi$ of an algebraic system $A$ onto a system $A'$, then the canonical mapping $a/\theta \mapsto \phi(a)$, where $a/\theta = \{ b \in A : (b,a) \in \theta \}$, is an isomorphism of the quotient system $A/\theta$ onto $A'$.
For references see Homomorphism.
How to Cite This Entry:
Kernel congruence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kernel_congruence&oldid=11822
This article was adapted from an original article by D.M. Smirnov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article