Difference between revisions of "Behnke-Stein theorem"
From Encyclopedia of Mathematics
Ulf Rehmann (talk | contribs) m (moved Behnke–Stein theorem to Behnke-Stein theorem: ascii title) |
(Tex done) |
||
Line 1: | Line 1: | ||
− | The union of domains of holomorphy | + | The union of [[domain of holomorphy |domains of holomorphy]] $G_k \subset \mathbf{C}^n$, $k=1,2,\ldots$ for which $G_k \subseteq G_{k+1}$ for all $k$, is also a domain of holomorphy. The Behnke–Stein theorem is valid not only in the complex Euclidean space $\mathbf{C}^n$, but also on any [[Stein manifold]]. If the sequence $G_k$ is not monotone increasing under imbedding, the theorem is not valid; e.g. the union of the two domains of holomorphy |
− | + | $$ | |
− | + | G_1 = \{ (z_1,z_2) : |z_1| <1 \,,\ |z_2| < 2 \} | |
− | + | $$ | |
and | and | ||
+ | $$ | ||
+ | G_2 = \{ (z_1,z_2) : |z_1| <2 \,,\ |z_2| < 1 \} | ||
+ | $$ | ||
+ | in $\mathbf{C}^2$ is not a domain of holomorphy. | ||
− | <table | + | ====References==== |
+ | <table> | ||
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> H. Behnke, K. Stein, "Konvergente Folgen von Regularitätsbereichen und die Meromorphiekonvexität" ''Math. Ann.'' , '''116''' (1938) pp. 204–216 {{DOI|10.1007/BF01597355}} {{ZBL|0020.37803}}</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> Hans Grauert, Reinhold Remmert, "Theory of Stein spaces" (Tr. Alan Huckleberry) Grundlehren der mathematischen Wissenschaften '''236''' Springer (1979, repr.2008) ISBN 3-540-00373-8 {{ZBL|0433.32007}} | ||
+ | </table> | ||
− | + | {{TEX|done}} | |
− | |||
− | |||
− |
Revision as of 21:45, 5 November 2016
The union of domains of holomorphy $G_k \subset \mathbf{C}^n$, $k=1,2,\ldots$ for which $G_k \subseteq G_{k+1}$ for all $k$, is also a domain of holomorphy. The Behnke–Stein theorem is valid not only in the complex Euclidean space $\mathbf{C}^n$, but also on any Stein manifold. If the sequence $G_k$ is not monotone increasing under imbedding, the theorem is not valid; e.g. the union of the two domains of holomorphy $$ G_1 = \{ (z_1,z_2) : |z_1| <1 \,,\ |z_2| < 2 \} $$ and $$ G_2 = \{ (z_1,z_2) : |z_1| <2 \,,\ |z_2| < 1 \} $$ in $\mathbf{C}^2$ is not a domain of holomorphy.
References
[1] | H. Behnke, K. Stein, "Konvergente Folgen von Regularitätsbereichen und die Meromorphiekonvexität" Math. Ann. , 116 (1938) pp. 204–216 DOI 10.1007/BF01597355 Zbl 0020.37803 |
[2] | V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian) |
[a1] | Hans Grauert, Reinhold Remmert, "Theory of Stein spaces" (Tr. Alan Huckleberry) Grundlehren der mathematischen Wissenschaften 236 Springer (1979, repr.2008) ISBN 3-540-00373-8 Zbl 0433.32007 |
How to Cite This Entry:
Behnke-Stein theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Behnke-Stein_theorem&oldid=22077
Behnke-Stein theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Behnke-Stein_theorem&oldid=22077
This article was adapted from an original article by E.M. Chirka (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article