Namespaces
Variants
Actions

Difference between revisions of "Wallman compactification"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(Tex done)
 
Line 1: Line 1:
''Wallman–Shanin compactification, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097050/w0970501.png" />, of a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097050/w0970502.png" /> satisfying the axiom <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097050/w0970503.png" /> (cf. [[Separation axiom|Separation axiom]])''
+
{{MSC|54D35}}
  
The space whose points are maximal centred systems of closed sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097050/w0970504.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097050/w0970505.png" /> (cf. [[Centred family of sets|Centred family of sets]]). The topology in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097050/w0970506.png" /> is given by the closed base <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097050/w0970507.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097050/w0970508.png" /> ranges over all closed sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097050/w0970509.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097050/w09705010.png" /> consists of precisely those <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097050/w09705011.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097050/w09705012.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097050/w09705013.png" />.
+
''Wallman–Shanin compactification, $\omega X$, of a topological space $X$ satisfying the [[separation axiom]] $T_1$''
 +
 
 +
The space whose points are maximal [[Centred family of sets|centred systems]] of closed sets $\xi = \{F_\alpha \}$ in $X$. The topology in $\omega X$ is given by the [[closed base]] $\{ \Phi_F \}$, where $F$ ranges over all closed sets in $X$ and $\Phi_F$ consists of precisely those $\xi = \{F_\alpha \}$ for which $F = F_\alpha$ for some $\alpha$.
  
 
This compactification was described by H. Wallman [[#References|[1]]].
 
This compactification was described by H. Wallman [[#References|[1]]].
  
The Wallman compactification is always a compact <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097050/w09705014.png" />-space; for a normal space it coincides with the [[Stone–Čech compactification|Stone–Čech compactification]].
+
The Wallman compactification is always a compact $T_1$-space; for a normal space it coincides with the [[Stone–Čech compactification]].
  
If in defining the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097050/w09705015.png" /> one chooses not all closed sets, but only those contained in a certain fixed closed base, one obtains a so-called compactification of Wallman type. Not every Hausdorff compactification of a [[Tikhonov space|Tikhonov space]] is a compactification of Wallman type.
+
If in defining the extension $\omega X$ one chooses not all closed sets, but only those contained in a certain fixed closed base, one obtains a so-called compactification of Wallman type. Not every Hausdorff compactification of a [[Tikhonov space]] is a compactification of Wallman type.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Wallman,  "Lattices and topological spaces"  ''Ann of Math.'' , '''39'''  (1938)  pp. 112–126</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  H. Wallman,  "Lattices and topological spaces"  ''Ann of Math.'' , '''39'''  (1938)  pp. 112–126</TD></TR>
 +
</table>
  
  
Line 18: Line 22:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  V.M. Ul'yanov,  "Solution of a basic problem on compactifications of Wallman type"  ''Soviet Math. Dokl.'' , '''18'''  (1977)  pp. 567–571  ''Dokl. Akad. Nauk SSSR'' , '''233''' :  6  (1977)  pp. 1056–1059</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R.A. Alo,  H.L. Shapiro,  "Normal bases and compactifications"  ''Math. Ann.'' , '''175'''  (1968)  pp. 337–340</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  O. Frink,  "Compactifications and semi-normal spaces"  ''Amer. J. Math.'' , '''86'''  (1964)  pp. 602–607</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R.C. Walker,  "The Stone–Čech compactification" , Springer  (1974)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  V.M. Ul'yanov,  "Solution of a basic problem on compactifications of Wallman type"  ''Soviet Math. Dokl.'' , '''18'''  (1977)  pp. 567–571  ''Dokl. Akad. Nauk SSSR'' , '''233''' :  6  (1977)  pp. 1056–1059</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  R.A. Alo,  H.L. Shapiro,  "Normal bases and compactifications"  ''Math. Ann.'' , '''175'''  (1968)  pp. 337–340</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  O. Frink,  "Compactifications and semi-normal spaces"  ''Amer. J. Math.'' , '''86'''  (1964)  pp. 602–607</TD></TR>
 +
<TR><TD valign="top">[a4]</TD> <TD valign="top">  R.C. Walker,  "The Stone–Čech compactification" , Springer  (1974)</TD></TR>
 +
</table>
 +
 
 +
{{TEX|done}}

Latest revision as of 17:34, 19 October 2016

2020 Mathematics Subject Classification: Primary: 54D35 [MSN][ZBL]

Wallman–Shanin compactification, $\omega X$, of a topological space $X$ satisfying the separation axiom $T_1$

The space whose points are maximal centred systems of closed sets $\xi = \{F_\alpha \}$ in $X$. The topology in $\omega X$ is given by the closed base $\{ \Phi_F \}$, where $F$ ranges over all closed sets in $X$ and $\Phi_F$ consists of precisely those $\xi = \{F_\alpha \}$ for which $F = F_\alpha$ for some $\alpha$.

This compactification was described by H. Wallman [1].

The Wallman compactification is always a compact $T_1$-space; for a normal space it coincides with the Stone–Čech compactification.

If in defining the extension $\omega X$ one chooses not all closed sets, but only those contained in a certain fixed closed base, one obtains a so-called compactification of Wallman type. Not every Hausdorff compactification of a Tikhonov space is a compactification of Wallman type.

References

[1] H. Wallman, "Lattices and topological spaces" Ann of Math. , 39 (1938) pp. 112–126


Comments

Compactifications that are not Wallman compactifications were constructed by V.M. Ul'yanov [a1].

References

[a1] V.M. Ul'yanov, "Solution of a basic problem on compactifications of Wallman type" Soviet Math. Dokl. , 18 (1977) pp. 567–571 Dokl. Akad. Nauk SSSR , 233 : 6 (1977) pp. 1056–1059
[a2] R.A. Alo, H.L. Shapiro, "Normal bases and compactifications" Math. Ann. , 175 (1968) pp. 337–340
[a3] O. Frink, "Compactifications and semi-normal spaces" Amer. J. Math. , 86 (1964) pp. 602–607
[a4] R.C. Walker, "The Stone–Čech compactification" , Springer (1974)
How to Cite This Entry:
Wallman compactification. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wallman_compactification&oldid=15108
This article was adapted from an original article by P.S. Aleksandrov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article