Difference between revisions of "Trigonometric interpolation"
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
− | The approximate representation of a function | + | {{TEX|done}} |
+ | The approximate representation of a function $f$ in the form of a [[Trigonometric polynomial|trigonometric polynomial]] | ||
− | + | $$T(x)=A+\sum_{k=1}^n(a_k\cos kx+b_k\sin kx)$$ | |
− | whose values coincide at prescribed points with the corresponding values of the function. Thus, it is always possible to choose the | + | whose values coincide at prescribed points with the corresponding values of the function. Thus, it is always possible to choose the $2n+1$ coefficients $A$, $a_k$, $b_k$, $k=1,\dots,n$, of the $n$-th order polynomial $T$ so that its values are equal to the values $y_k$ of the function at $2n+1$ preassigned points $x_k$ in the interval $[0,2\pi)$. The polynomial has the form |
− | + | $$T(x)=\sum_{k=0}^{2n}y_kt_k(x),\tag{*}$$ | |
where | where | ||
− | + | $$t_k(x)=\frac{\Delta x}{\Delta'(x)2\sin(x-x_k)/2},\quad\Delta(x)=\prod_{k=0}^{2n}2\sin\frac{x-x_k}{2}.$$ | |
− | The polynomial | + | The polynomial $T$ assumes an especially simple form in case the nodes $x_k=2k\pi/(2n+1)$ are equi-distant; the coefficients are given by the formulas |
− | + | $$A=\frac{1}{2n+1}\sum_{k=0}^{2n}y_k,$$ | |
− | + | $$a_m=\frac{2}{2n+1}\sum_{k=0}^{2n}y_k\cos mx_k,$$ | |
− | + | $$b_m=\frac{2}{2n+1}\sum_{k=0}^{2n}y_k\sin mx_k,\quad1\leq m\leq n.$$ | |
====Comments==== | ====Comments==== | ||
− | The formula | + | The formula \ref{*} above for the trigonometric polynomial taking the prescribed values $y_k$ at the nodes $x_k$ is known as the Gauss formula of trigonometric interpolation, [[#References|[a2]]]. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''2''' , Cambridge Univ. Press (1988)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 29, 38</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''2''' , Cambridge Univ. Press (1988)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 29, 38</TD></TR></table> |
Revision as of 14:32, 3 June 2016
The approximate representation of a function $f$ in the form of a trigonometric polynomial
$$T(x)=A+\sum_{k=1}^n(a_k\cos kx+b_k\sin kx)$$
whose values coincide at prescribed points with the corresponding values of the function. Thus, it is always possible to choose the $2n+1$ coefficients $A$, $a_k$, $b_k$, $k=1,\dots,n$, of the $n$-th order polynomial $T$ so that its values are equal to the values $y_k$ of the function at $2n+1$ preassigned points $x_k$ in the interval $[0,2\pi)$. The polynomial has the form
$$T(x)=\sum_{k=0}^{2n}y_kt_k(x),\tag{*}$$
where
$$t_k(x)=\frac{\Delta x}{\Delta'(x)2\sin(x-x_k)/2},\quad\Delta(x)=\prod_{k=0}^{2n}2\sin\frac{x-x_k}{2}.$$
The polynomial $T$ assumes an especially simple form in case the nodes $x_k=2k\pi/(2n+1)$ are equi-distant; the coefficients are given by the formulas
$$A=\frac{1}{2n+1}\sum_{k=0}^{2n}y_k,$$
$$a_m=\frac{2}{2n+1}\sum_{k=0}^{2n}y_k\cos mx_k,$$
$$b_m=\frac{2}{2n+1}\sum_{k=0}^{2n}y_k\sin mx_k,\quad1\leq m\leq n.$$
Comments
The formula \ref{*} above for the trigonometric polynomial taking the prescribed values $y_k$ at the nodes $x_k$ is known as the Gauss formula of trigonometric interpolation, [a2].
References
[a1] | A. Zygmund, "Trigonometric series" , 2 , Cambridge Univ. Press (1988) |
[a2] | P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 29, 38 |
Trigonometric interpolation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Trigonometric_interpolation&oldid=13422