Namespaces
Variants
Actions

Difference between revisions of "Pointed set"

From Encyclopedia of Mathematics
Jump to: navigation, search
(See also: Pointed space, Pointed object)
m (better)
Line 3: Line 3:
 
A non-empty set having a distinguished point or "base point".  Maps of pointed sets are maps of the underlying sets that preserve the base point.
 
A non-empty set having a distinguished point or "base point".  Maps of pointed sets are maps of the underlying sets that preserve the base point.
  
The [[category]] of pointed sets and base-poijt preserving maps has an initial and terminal object (cf. [[Null object of a category]]) consisting of a one-element set.   
+
The [[category]] of pointed sets and base-point preserving maps has an initial and terminal object (cf. [[Null object of a category]]) consisting of a one-element set.   
  
 
For topological spaces with a distinguished point, see [[Pointed space]].  For the categorical construction generalising the relationship between sets and pointed sets, see [[Pointed object]].
 
For topological spaces with a distinguished point, see [[Pointed space]].  For the categorical construction generalising the relationship between sets and pointed sets, see [[Pointed object]].

Revision as of 09:16, 22 May 2016

2020 Mathematics Subject Classification: Primary: 03E [MSN][ZBL]

A non-empty set having a distinguished point or "base point". Maps of pointed sets are maps of the underlying sets that preserve the base point.

The category of pointed sets and base-point preserving maps has an initial and terminal object (cf. Null object of a category) consisting of a one-element set.

For topological spaces with a distinguished point, see Pointed space. For the categorical construction generalising the relationship between sets and pointed sets, see Pointed object.

References

  • S. MacLane, "Categories for the working mathematician" Graduate Texts in Mathematics 5, Springer (1971) ISBN 0-387-98403-8
How to Cite This Entry:
Pointed set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pointed_set&oldid=34808