Difference between revisions of "Cauchy filter"
(Importing text file) |
m (better) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | A filter | + | A [[filter]] $\mathfrak{F}$ on a [[uniform space]] $X$ such that for any entourage $V$ of the uniform structure of $X$ there exists a set which is $V$-small and belongs to $\mathfrak{F}$. In other words, a Cauchy filter is a filter which contains arbitrarily small sets in a uniform space $X$. The concept is a generalization of the concept of a Cauchy sequence in metric spaces. |
− | Every convergent filter is a Cauchy filter. Every filter which is finer than a Cauchy filter is also a Cauchy filter. The image of a Cauchy filterbase under a uniformly-continuous mapping is again a Cauchy filterbase. A uniform space in which every Cauchy filter is convergent is a complete space. | + | Every convergent filter (cf. [[Limit]]) is a Cauchy filter. Every filter which is finer than a Cauchy filter is also a Cauchy filter. The image of a Cauchy filterbase under a uniformly-continuous mapping is again a Cauchy filterbase. A uniform space in which every Cauchy filter is convergent is a [[complete space]]. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. General topology" , Addison-Wesley (1966) pp. Chapt. II: Uniform structures (Translated from French)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. General topology" , Addison-Wesley (1966) pp. Chapt. II: Uniform structures (Translated from French)</TD></TR> | ||
+ | </table> | ||
====Comments==== | ====Comments==== | ||
− | A Cauchy filterbase (or Cauchy | + | A Cauchy filterbase (or Cauchy $d$-filterbase) is a filterbase $\mathfrak{A} = \{ A_\alpha : \alpha \in \mathcal{A} \}$ in a [[metric space]] $(X,d)$ such that for every $\epsilon > 0$ there is some $\alpha \in \mathcal{A}$ for which $\text{diam}\,A_\alpha < \epsilon$ (cf. [[#References|[a1]]]). |
− | A filterbase in a space | + | A filterbase in a space $X$ is a family $\{ A_\alpha : \alpha \in \mathcal{A} \}$ of subsets of $X$ with the properties: 1) $A_\alpha \neq \emptyset$ for all $\alpha \in \mathcal{A}$; and 2) for all $\alpha,\beta \in \mathcal{A}$ there is a $\gamma \in \mathcal{A}$ such that $A_\gamma \subseteq A_\alpha \cap A_\beta$ (see also [[Directed set]]). |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Dugundji, "Topology" , Allyn & Bacon (1978)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Dugundji, "Topology" , Allyn & Bacon (1978)</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | {{TEX|done}} |
Latest revision as of 21:05, 2 May 2016
A filter $\mathfrak{F}$ on a uniform space $X$ such that for any entourage $V$ of the uniform structure of $X$ there exists a set which is $V$-small and belongs to $\mathfrak{F}$. In other words, a Cauchy filter is a filter which contains arbitrarily small sets in a uniform space $X$. The concept is a generalization of the concept of a Cauchy sequence in metric spaces.
Every convergent filter (cf. Limit) is a Cauchy filter. Every filter which is finer than a Cauchy filter is also a Cauchy filter. The image of a Cauchy filterbase under a uniformly-continuous mapping is again a Cauchy filterbase. A uniform space in which every Cauchy filter is convergent is a complete space.
References
[1] | N. Bourbaki, "Elements of mathematics. General topology" , Addison-Wesley (1966) pp. Chapt. II: Uniform structures (Translated from French) |
Comments
A Cauchy filterbase (or Cauchy $d$-filterbase) is a filterbase $\mathfrak{A} = \{ A_\alpha : \alpha \in \mathcal{A} \}$ in a metric space $(X,d)$ such that for every $\epsilon > 0$ there is some $\alpha \in \mathcal{A}$ for which $\text{diam}\,A_\alpha < \epsilon$ (cf. [a1]).
A filterbase in a space $X$ is a family $\{ A_\alpha : \alpha \in \mathcal{A} \}$ of subsets of $X$ with the properties: 1) $A_\alpha \neq \emptyset$ for all $\alpha \in \mathcal{A}$; and 2) for all $\alpha,\beta \in \mathcal{A}$ there is a $\gamma \in \mathcal{A}$ such that $A_\gamma \subseteq A_\alpha \cap A_\beta$ (see also Directed set).
References
[a1] | J. Dugundji, "Topology" , Allyn & Bacon (1978) |
Cauchy filter. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cauchy_filter&oldid=12827