Namespaces
Variants
Actions

Difference between revisions of "BCH-algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (better)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
A variant of a [[BCI-algebra|BCI-algebra]]. One can define it by taking some of the axioms for a BCI-algebra and some of the important properties of a BCI-algebra. Specifically, a BCH-algebra is a non-empty set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110170/b1101701.png" /> with a constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110170/b1101702.png" /> and a [[Binary relation|binary relation]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110170/b1101703.png" /> satisfying the following axioms:
+
{{TEX|done}}
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110170/b1101704.png" />;
+
A variant of a [[BCI-algebra]]. One can define it by taking some of the axioms for a BCI-algebra and some of the important properties of a BCI-algebra. Specifically, a BCH-algebra is a non-empty set $X$ with a constant $0$ and a [[binary operation]] $*$ satisfying the following axioms:
  
2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110170/b1101705.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110170/b1101706.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110170/b1101707.png" />;
+
1) $x * x = 0$;
  
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110170/b1101708.png" />. Clearly a BCI-algebra is a BCH-algebra; however, the converse is not true. While some work has been done on such algebras, generally they have not been as extensively investigated as BCI-algebras.
+
2) if $x * y = 0$ and $y * x = 0$, then $x = y$;
 +
 
 +
3) $(x*y)*z = (x*z)*y$.  
 +
 
 +
Clearly a BCI-algebra is a BCH-algebra; however, the converse is not true. While some work has been done on such algebras, generally they have not been as extensively investigated as BCI-algebras.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  Qing-ping Hu,  Xin Li,  "On BCH-algebras"  ''Math. Seminar Notes (Kobe University)'' , '''11'''  (1983)  pp. 313–320</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  Y. Imai,  K. Iséki,  "On axiom systems of propositional calculi, XIV"  ''Proc. Japan Acad. Ser. A Math. Sci.'' , '''42'''  (1966)  pp. 19–22</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  K. Iséki,  "An algebra related with a propositional calculus"  ''Proc. Japan Acad. Ser. A, Math. Sci.'' , '''42'''  (1966)  pp. 26–29</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  Qing-ping Hu,  Xin Li,  "On BCH-algebras"  ''Math. Seminar Notes (Kobe University)'' , '''11'''  (1983)  pp. 313–320 {{ZBL|0579.03047}}</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  Y. Imai,  K. Iséki,  "On axiom systems of propositional calculi, XIV"  ''Proc. Japan Acad. Ser. A Math. Sci.'' , '''42'''  (1966)  pp. 19–22 {{DOI|10.3792/pja/1195522169}} {{MR|0195704}} {{ZBL|0156.24812}}</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  K. Iséki,  "An algebra related with a propositional calculus"  ''Proc. Japan Acad. Ser. A, Math. Sci.'' , '''42'''  (1966)  pp. 26–29 {{DOI|10.3792/pja/1195522171}} {{MR|0202571}} {{ZBL|0207.29304}}</TD></TR>
 +
</table>

Latest revision as of 07:03, 1 May 2016


A variant of a BCI-algebra. One can define it by taking some of the axioms for a BCI-algebra and some of the important properties of a BCI-algebra. Specifically, a BCH-algebra is a non-empty set $X$ with a constant $0$ and a binary operation $*$ satisfying the following axioms:

1) $x * x = 0$;

2) if $x * y = 0$ and $y * x = 0$, then $x = y$;

3) $(x*y)*z = (x*z)*y$.

Clearly a BCI-algebra is a BCH-algebra; however, the converse is not true. While some work has been done on such algebras, generally they have not been as extensively investigated as BCI-algebras.

References

[a1] Qing-ping Hu, Xin Li, "On BCH-algebras" Math. Seminar Notes (Kobe University) , 11 (1983) pp. 313–320 Zbl 0579.03047
[a2] Y. Imai, K. Iséki, "On axiom systems of propositional calculi, XIV" Proc. Japan Acad. Ser. A Math. Sci. , 42 (1966) pp. 19–22 DOI 10.3792/pja/1195522169 MR0195704 Zbl 0156.24812
[a3] K. Iséki, "An algebra related with a propositional calculus" Proc. Japan Acad. Ser. A, Math. Sci. , 42 (1966) pp. 26–29 DOI 10.3792/pja/1195522171 MR0202571 Zbl 0207.29304
How to Cite This Entry:
BCH-algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=BCH-algebra&oldid=17336
This article was adapted from an original article by C.S. Hoo (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article