Difference between revisions of "Ricci tensor"
(Importing text file) |
m (TeX-ed article.) |
||
| Line 1: | Line 1: | ||
| − | A twice-covariant tensor obtained from the [[Riemann tensor|Riemann tensor]] | + | A twice-covariant tensor obtained from the [[Riemann tensor|Riemann tensor]] $ R^{l}_{jkl} $ by contracting the upper index with the first lower one: |
| + | $$ | ||
| + | R_{ki} = R^{m}_{mki}. | ||
| + | $$ | ||
| − | + | In a Riemannian space $ V_{n} $, the Ricci tensor is symmetric: $ R_{ki} = R_{ik} $. The trace of the Ricci tensor with respect to the contravariant metric tensor $ g^{ij} $ of the space $ V_{n} $ leads to a scalar, $ R = g^{ij} R_{ij} $, called the ''curvature invariant'' or the ''scalar curvature'' of $ V_{n} $. The components of the Ricci tensor can be expressed in terms of the metric tensor $ g_{ij} $ of the space $ V_{n} $: | |
| + | $$ | ||
| + | R_{ij} = | ||
| + | \frac{\partial^{2} \ln \sqrt{g}}{\partial x^{i} \partial x^{j}} - | ||
| + | \frac{\partial}{\partial x^{k}} \Gamma^{k}_{ij} + | ||
| + | \Gamma^{m}_{ik} \Gamma^{k}_{mj} - | ||
| + | \Gamma^{m}_{ij} \frac{\partial \ln \sqrt{g}}{\partial x^{m}}, | ||
| + | $$ | ||
| + | where $ g = \det g_{ij} $ and $ \Gamma^{k}_{ij} $ are the [[Christoffel symbol|Christoffel symbols]] of the second kind calculated with respect to the tensor $ g_{ij} $. | ||
| − | + | The tensor was introduced by G. Ricci in [[#References|[1]]]. | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | The tensor was introduced by G. Ricci [[#References|[1]]]. | ||
====References==== | ====References==== | ||
| − | |||
| − | |||
| + | <table> | ||
| + | <TR><TD valign="top">[1]</TD><TD valign="top"> G. Ricci, “Atti R. Inst. Venelo”, '''53''': 2 (1903–1904), pp. 1233–1239.</TD></TR> | ||
| + | <TR><TD valign="top">[2]</TD><TD valign="top"> L.P. Eisenhart, “Riemannian geometry”, Princeton Univ. Press (1949).</TD></TR> | ||
| + | </table> | ||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
| − | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD><TD valign="top"> S. Kobayashi and K. Nomizu, “Foundations of differential geometry”, '''1''', Interscience (1963).</TD></TR></table> | ||
Latest revision as of 06:46, 28 April 2016
A twice-covariant tensor obtained from the Riemann tensor $ R^{l}_{jkl} $ by contracting the upper index with the first lower one: $$ R_{ki} = R^{m}_{mki}. $$
In a Riemannian space $ V_{n} $, the Ricci tensor is symmetric: $ R_{ki} = R_{ik} $. The trace of the Ricci tensor with respect to the contravariant metric tensor $ g^{ij} $ of the space $ V_{n} $ leads to a scalar, $ R = g^{ij} R_{ij} $, called the curvature invariant or the scalar curvature of $ V_{n} $. The components of the Ricci tensor can be expressed in terms of the metric tensor $ g_{ij} $ of the space $ V_{n} $: $$ R_{ij} = \frac{\partial^{2} \ln \sqrt{g}}{\partial x^{i} \partial x^{j}} - \frac{\partial}{\partial x^{k}} \Gamma^{k}_{ij} + \Gamma^{m}_{ik} \Gamma^{k}_{mj} - \Gamma^{m}_{ij} \frac{\partial \ln \sqrt{g}}{\partial x^{m}}, $$ where $ g = \det g_{ij} $ and $ \Gamma^{k}_{ij} $ are the Christoffel symbols of the second kind calculated with respect to the tensor $ g_{ij} $.
The tensor was introduced by G. Ricci in [1].
References
| [1] | G. Ricci, “Atti R. Inst. Venelo”, 53: 2 (1903–1904), pp. 1233–1239. |
| [2] | L.P. Eisenhart, “Riemannian geometry”, Princeton Univ. Press (1949). |
Comments
References
| [a1] | S. Kobayashi and K. Nomizu, “Foundations of differential geometry”, 1, Interscience (1963). |
Ricci tensor. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ricci_tensor&oldid=12398