Difference between revisions of "Frobenius algebra"
(Importing text file) |
(TeX done) |
||
Line 1: | Line 1: | ||
− | A finite-dimensional algebra | + | A finite-dimensional algebra $R$ over a field $K$ such that the left $R$-modules $R$ and $\mathrm{Hom}_K(R,K)$ are isomorphic. In the language of representations this means that the left and right regular representations are equivalent. Every group algebra of a finite group over a field is a Frobenius algebra. Every Frobenius algebra is a [[quasi-Frobenius ring]]. The converse is not true. The following properties of a finite-dimensional $K$-algebra $R$ are equivalent: |
− | 1) | + | 1) $R$ is a Frobenius algebra; |
− | 2) there is a non-degenerate bilinear form | + | 2) there is a non-degenerate bilinear form $F : R \times R \rightarrow K$ such that $f(ab,c) = f(a,bc)$ for all $a,b,c \in R$; |
− | 3) if | + | 3) if $L$ is a left and $H$ is a right ideal of $R$, then (see [[Annihilator]]) |
− | + | $$ | |
− | + | \mathfrak{Z}_{\mathrm{l}}(\mathfrak{Z}_{\mathrm{r}}(L)) = L,\ \ \ \mathfrak{Z}_{\mathrm{r}}(\mathfrak{Z}_{\mathrm{l}}(H)) = H \ ; | |
− | + | $$ | |
− | + | $$ | |
+ | \dim_K \mathfrak{Z}_{\mathrm{r}}(L) + \dim_K L = \dim_K R = \dim_K \mathfrak{Z}_{\mathrm{l}}(H) + \dim_K K \ \. | ||
+ | $$ | ||
Frobenius algebras essentially first appeared in the papers of G. Frobenius [[#References|[3]]]. | Frobenius algebras essentially first appeared in the papers of G. Frobenius [[#References|[3]]]. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C.W. Curtis, I. Reiner, "Representation theory of finite groups and associative algebras" , Interscience (1962)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C. Faith, "Algebra: rings, modules and categories" , '''1–2''' , Springer (1973–1976)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G. Frobenius, "Theorie der hyperkomplexen Grössen" ''Sitzungsber. Königl. Preuss. Akad. Wiss.'' : 24 (1903) pp. 504–537; 634–645</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> C.W. Curtis, I. Reiner, "Representation theory of finite groups and associative algebras" , Interscience (1962)</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> C. Faith, "Algebra: rings, modules and categories" , '''1–2''' , Springer (1973–1976)</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> G. Frobenius, "Theorie der hyperkomplexen Grössen" ''Sitzungsber. Königl. Preuss. Akad. Wiss.'' : 24 (1903) pp. 504–537; 634–645</TD></TR> | ||
+ | </table> | ||
====Comments==== | ====Comments==== | ||
− | A criterion for an algebra | + | A criterion for an algebra $A$ to be Frobenius is that there is a linear form $\phi$ on $A$ such that if $\phi(ab) = 0$ for all $a \in A$ then $b = 0$. If, moreover, $\phi$ satisfies $\phi(ab) = \phi(ba)$ for all $a,b \in A$, then $A$ is called a symmetric algebra. |
Examples of symmetric algebras are semi-simple algebras and group algebras. | Examples of symmetric algebras are semi-simple algebras and group algebras. | ||
+ | |||
+ | {{TEX|done}} |
Latest revision as of 15:37, 5 February 2016
A finite-dimensional algebra $R$ over a field $K$ such that the left $R$-modules $R$ and $\mathrm{Hom}_K(R,K)$ are isomorphic. In the language of representations this means that the left and right regular representations are equivalent. Every group algebra of a finite group over a field is a Frobenius algebra. Every Frobenius algebra is a quasi-Frobenius ring. The converse is not true. The following properties of a finite-dimensional $K$-algebra $R$ are equivalent:
1) $R$ is a Frobenius algebra;
2) there is a non-degenerate bilinear form $F : R \times R \rightarrow K$ such that $f(ab,c) = f(a,bc)$ for all $a,b,c \in R$;
3) if $L$ is a left and $H$ is a right ideal of $R$, then (see Annihilator) $$ \mathfrak{Z}_{\mathrm{l}}(\mathfrak{Z}_{\mathrm{r}}(L)) = L,\ \ \ \mathfrak{Z}_{\mathrm{r}}(\mathfrak{Z}_{\mathrm{l}}(H)) = H \ ; $$ $$ \dim_K \mathfrak{Z}_{\mathrm{r}}(L) + \dim_K L = \dim_K R = \dim_K \mathfrak{Z}_{\mathrm{l}}(H) + \dim_K K \ \. $$
Frobenius algebras essentially first appeared in the papers of G. Frobenius [3].
References
[1] | C.W. Curtis, I. Reiner, "Representation theory of finite groups and associative algebras" , Interscience (1962) |
[2] | C. Faith, "Algebra: rings, modules and categories" , 1–2 , Springer (1973–1976) |
[3] | G. Frobenius, "Theorie der hyperkomplexen Grössen" Sitzungsber. Königl. Preuss. Akad. Wiss. : 24 (1903) pp. 504–537; 634–645 |
Comments
A criterion for an algebra $A$ to be Frobenius is that there is a linear form $\phi$ on $A$ such that if $\phi(ab) = 0$ for all $a \in A$ then $b = 0$. If, moreover, $\phi$ satisfies $\phi(ab) = \phi(ba)$ for all $a,b \in A$, then $A$ is called a symmetric algebra.
Examples of symmetric algebras are semi-simple algebras and group algebras.
Frobenius algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Frobenius_algebra&oldid=14845