Difference between revisions of "Kronecker symbol"
(Importing text file) |
(TeX done) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | ''Kronecker delta'' | |
− | + | The number $\delta^i_j$ defined by | |
+ | $$ | ||
+ | \delta^i_j = \begin{cases} 1 & \text{if}\, i = j \\ 0 & \text{if}\, i \ne j \end{cases}\ \ , | ||
+ | $$ | ||
+ | $i,j = 1,2,\ldots$. When $1 \le i,j \le n$, the Kronecker symbol $\delta^i_j$ has $n^2$ components, and the matrix $(\delta^i_j)$ is the [[unit matrix]]. The Kronecker symbol was first used by L. Kronecker (1866). | ||
− | + | The Kronecker symbol may be generalized, considering instead a set of quantities $\delta^{i_1\ldots i_p}_{j_1\ldots j_p}$ with $2p$ integer (upper and lower) indices, $i_\alpha\,,j_\beta = 1,\ldots,n$, equal to $+1$ (or $-1$) if the sequence $(i_1\ldots i_p)$ is an even (odd) permutation of the distinct indices $(j_1\ldots j_p)$ and zero otherwise. The numbers $\delta^{i_1\ldots i_p}_{j_1\ldots j_p}$ (when $p \ge 2$ often denoted by $\epsilon^{i_1\ldots i_p}_{j_1\ldots j_p}$) are called the ''components'' of the Kronecker symbol. An [[affine tensor]] of type $(p,p)$ whose components relative to some basis are equal to the components of the Kronecker symbol is ''isotropic'': has the same components relative to any other basis. | |
− | |||
− | The Kronecker symbol may be generalized, considering instead a set of quantities | ||
The Kronecker symbol is convenient in various problems of tensor calculus. For example, the determinant | The Kronecker symbol is convenient in various problems of tensor calculus. For example, the determinant | ||
− | + | $$ | |
− | + | \left|{ | |
− | + | \begin{array}{ccc} a^1_1 & \ldots & a^1_n \\ \vdots & \ddots & \vdots \\ a^n_1 & \ldots & a^n_n \end{array} | |
+ | }\right| | ||
+ | $$ | ||
is equal to the sum | is equal to the sum | ||
+ | $$ | ||
+ | \sum \delta^{i_1\ldots i_n}_{1\ldots n} a^1_{i_1} \cdots a^n_{i_n} | ||
+ | $$ | ||
+ | where the summation is performed over all $n!$ permutations $( i_1\ldots i_n )$of the numbers $\{1,\ldots, n \}$. The ''alternant'' of the tensor $\{ a^{\alpha_1\ldots\alpha_n} : 1 \le \alpha_i \le n \}$ is given by | ||
+ | $$ | ||
+ | a^{[\alpha_1,\ldots,\alpha_p] } = \frac{1}{p!} \sum \delta^{\alpha_1\ldots \alpha_p}_{i_1\ldots i_p} a^{i_1\ldots i_p} \ . | ||
+ | $$ | ||
− | <table | + | ====References==== |
− | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Kronecker, "Vorlesungen über die Theorie der Determinanten" , Leipzig (1903)</TD></TR></table> | |
− | |||
− | + | ====Comment==== | |
+ | For the Kronecker symbol in number theory, see [[Legendre–Jacobi–Kronecker symbol]] | ||
− | + | {{TEX|done}} | |
− |
Latest revision as of 19:43, 13 January 2016
Kronecker delta
The number $\delta^i_j$ defined by $$ \delta^i_j = \begin{cases} 1 & \text{if}\, i = j \\ 0 & \text{if}\, i \ne j \end{cases}\ \ , $$ $i,j = 1,2,\ldots$. When $1 \le i,j \le n$, the Kronecker symbol $\delta^i_j$ has $n^2$ components, and the matrix $(\delta^i_j)$ is the unit matrix. The Kronecker symbol was first used by L. Kronecker (1866).
The Kronecker symbol may be generalized, considering instead a set of quantities $\delta^{i_1\ldots i_p}_{j_1\ldots j_p}$ with $2p$ integer (upper and lower) indices, $i_\alpha\,,j_\beta = 1,\ldots,n$, equal to $+1$ (or $-1$) if the sequence $(i_1\ldots i_p)$ is an even (odd) permutation of the distinct indices $(j_1\ldots j_p)$ and zero otherwise. The numbers $\delta^{i_1\ldots i_p}_{j_1\ldots j_p}$ (when $p \ge 2$ often denoted by $\epsilon^{i_1\ldots i_p}_{j_1\ldots j_p}$) are called the components of the Kronecker symbol. An affine tensor of type $(p,p)$ whose components relative to some basis are equal to the components of the Kronecker symbol is isotropic: has the same components relative to any other basis.
The Kronecker symbol is convenient in various problems of tensor calculus. For example, the determinant $$ \left|{ \begin{array}{ccc} a^1_1 & \ldots & a^1_n \\ \vdots & \ddots & \vdots \\ a^n_1 & \ldots & a^n_n \end{array} }\right| $$ is equal to the sum $$ \sum \delta^{i_1\ldots i_n}_{1\ldots n} a^1_{i_1} \cdots a^n_{i_n} $$ where the summation is performed over all $n!$ permutations $( i_1\ldots i_n )$of the numbers $\{1,\ldots, n \}$. The alternant of the tensor $\{ a^{\alpha_1\ldots\alpha_n} : 1 \le \alpha_i \le n \}$ is given by $$ a^{[\alpha_1,\ldots,\alpha_p] } = \frac{1}{p!} \sum \delta^{\alpha_1\ldots \alpha_p}_{i_1\ldots i_p} a^{i_1\ldots i_p} \ . $$
References
[1] | L. Kronecker, "Vorlesungen über die Theorie der Determinanten" , Leipzig (1903) |
Comment
For the Kronecker symbol in number theory, see Legendre–Jacobi–Kronecker symbol
Kronecker symbol. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kronecker_symbol&oldid=18809