|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | An [[Endomorphism|endomorphism]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f0417701.png" /> of a [[Scheme|scheme]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f0417702.png" /> over the finite field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f0417703.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f0417704.png" /> elements such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f0417705.png" /> is the identity mapping on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f0417706.png" />, and the mapping of the structure sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f0417707.png" /> is that of raising to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f0417708.png" />-th power. The Frobenius endomorphism is a purely-inseparable morphism and has zero differential. For an affine variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f0417709.png" /> defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f04177010.png" />, the Frobenius endomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f04177011.png" /> takes the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f04177012.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f04177013.png" />. | + | An [[endomorphism]] $\phi : X \rightarrow X$ of a [[scheme]] $X$ over the [[finite field]] $\mathbf{F}_q$ of $q$ elements such that $\phi$ is the identity mapping on $X(\mathbf{F}_q)$, and the mapping of the structure sheaf $\phi^* : \mathcal{O}_X \rightarrow \mathcal{O}_X$ is that of raising to the $q$-th power. The Frobenius endomorphism is a purely-inseparable morphism and has zero differential. For an [[affine variety]] $X \subset \mathbf{A}^n$ defined over $\mathbf{F}_q$, the Frobenius endomorphism $\phi$ takes the point $(x_1,\ldots,x_n)$ to $(x_1^q,\ldots,x_n^q)$. |
| | | |
− | The number of geometric points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f04177014.png" /> that are defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f04177015.png" /> is the same as the number of fixed points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f04177016.png" />, which enables one to use the [[Lefschetz formula|Lefschetz formula]] to determine the number of such points. | + | The number of geometric points of $X$ that are defined over $\mathbf{F}_q$ is the same as the number of fixed points of $\phi$, which enables one to use the [[Lefschetz formula]] to determine the number of such points. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR> |
| + | </table> |
| | | |
| | | |
| | | |
| ====Comments==== | | ====Comments==== |
− | Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f04177017.png" /> is the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f04177018.png" />-points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f04177019.png" />, i.e. the set of points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f04177020.png" /> that are defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041770/f04177021.png" />. | + | Here, $X(\mathbf{F}_q)$ is the set of $\mathbf{F}_q$-points of $X$, i.e. the set of points of $X$ that are defined over $\mathbf{F}_q$. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P. Gabriel, "Etude infinitésimal des schémas en groupes" M. Demazure (ed.) A. Grothendieck (ed.) , ''SGA 3. Exp. VII'' , ''Lect. notes in math.'' , '''151''' , Springer (1970)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> P. Gabriel, "Etude infinitésimal des schémas en groupes" M. Demazure (ed.) A. Grothendieck (ed.) , ''SGA 3. Exp. VII'' , ''Lect. notes in math.'' , '''151''' , Springer (1970)</TD></TR> |
| + | </table> |
| + | |
| + | {{TEX|done}} |
Latest revision as of 17:09, 10 January 2016
An endomorphism $\phi : X \rightarrow X$ of a scheme $X$ over the finite field $\mathbf{F}_q$ of $q$ elements such that $\phi$ is the identity mapping on $X(\mathbf{F}_q)$, and the mapping of the structure sheaf $\phi^* : \mathcal{O}_X \rightarrow \mathcal{O}_X$ is that of raising to the $q$-th power. The Frobenius endomorphism is a purely-inseparable morphism and has zero differential. For an affine variety $X \subset \mathbf{A}^n$ defined over $\mathbf{F}_q$, the Frobenius endomorphism $\phi$ takes the point $(x_1,\ldots,x_n)$ to $(x_1^q,\ldots,x_n^q)$.
The number of geometric points of $X$ that are defined over $\mathbf{F}_q$ is the same as the number of fixed points of $\phi$, which enables one to use the Lefschetz formula to determine the number of such points.
References
Here, $X(\mathbf{F}_q)$ is the set of $\mathbf{F}_q$-points of $X$, i.e. the set of points of $X$ that are defined over $\mathbf{F}_q$.
References
[a1] | P. Gabriel, "Etude infinitésimal des schémas en groupes" M. Demazure (ed.) A. Grothendieck (ed.) , SGA 3. Exp. VII , Lect. notes in math. , 151 , Springer (1970) |
How to Cite This Entry:
Frobenius endomorphism. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Frobenius_endomorphism&oldid=12821
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article